By Guest Blogger
Posted on 2014-09-25
For the past 15 months, a four-letter acronym has been on the tip of science educators’ tongues: NGSS, the Next Generation Science Standards. Whether you personally are or your state board of education is “in favor of,” or “opposed to,” or you are simply “engaged with” the NGSS, there is no doubt that their release has been scrutinized in the media and intensively discussed within the science education community; it is an exciting time for science education.
Crosscutting concepts, disciplinary core ideas, science and engineering practices, performance expectations, and assessment boundaries are all important aspects of the curricular process that science educators should consider while planning curriculums, units, and daily lessons. Considering the information the document contains, it is fair to say that the NGSS covers the “what” of teaching—the content students should know and understand—and up to a point, the “why” has been incorporated into the architecture, which used the learning progressions from A Framework for K–12 Science Education to design the performance expectations.
NGSS does not mention the “how” or method by which these core ideas, crosscutting concepts, and practices should be taught. An online search of the NGSS for the keywords “teaching” and “pedagogy” returned no hits for either. However, if we review the Framework, it has some valuable points to remember and continue to practice in our classrooms every day to engage students in learning. The Framework states, “[I]nstruction refers to methods of teaching and the learning activities used to help students master the content and objectives specified by a curriculum. Instruction encompasses the activities of both teachers and students. It can be carried out by a variety of pedagogical techniques, sequences of activities, and ordering of topics” (NRC 2012, p. 250). The overarching point of this quote connects with the “how” or method a teacher selects to engage students and assist them in discovering the content, concepts, and practices outlined in the NGSS. These decisions are not as clearly spelled out and require experience, skill, and creativity in selection.
In recent years, there has been discussion, discourse, and debate about direct instruction versus inquiry, which are on opposite ends of the spectrum. This debate has produced research results on both sides of the topic (some of which are published by the National Academy of Sciences, the publisher of the Framework and the NGSS). Furthermore, current generalized approaches in the educational arena too often bleed into the science area and focus on remediation, intervention, and test preparation skills, with little or no direct relationship to how students learn science.
In developing the Framework, the Committee on a Conceptual Framework for New K–12 Science Education Standards was not charged with addressing instruction, but rather content. However, they still felt the need to incorporate the chapter titled “implementation,” which discusses instruction. They quickly pointed out that they were not making formal recommendations, but understood the “[s]tandards provide a vision for teaching and learning, but the vision cannot be realized unless the standards permeate the education system and guide curriculum, instruction, teacher preparation and professional development, and student assessment” (NRC 2012, p. 241). So the area of instruction becomes the question of “how” and thus becomes personal to each teacher in each classroom each day. Decisions of “how” or what teaching methods to select are at the intersection of general educational understanding, content knowledge, and knowledge of how the students in an individual class will best learn. Some call the intersection of these three aspects pedagogical content knowledge (PCK). Applied PCK is at the heart of decision-making in the moment; it is “the art of teaching.” Teachers need to take the individual components within PCK, combine them with their own passion and energy for learning and teaching, and encourage students to engage in the learning process. No two classes will be the same, no two lessons will follow the exact path, and no two students will arrive at the same outcome at the same moment. Each of these experiences for the students, class, and teacher will be an individual discovery. As the American poet and teacher Mark Van Doren stated, “The art of teaching is the art of assisting discovery”—and I contend the ultimate answer to the question of “how.”
My certificate from the state of Pennsylvania certifies me “to practice the art of teaching and render services” in my certificated areas. I support and believe in the efficacy and importance of the NGSS, the focus they bring to what students should know and understand, as well as the explicit need to integrate the three dimensions within the classroom lessons. However, like each of you, I am a teacher who knows my students and needs to make informed decisions about how to best engage them in the instruction of the content presented in the standards. In the end, it is important to remember that we need to know about the content and resources available, as well as make decisions that will best bring that content alive for our students. This intersection among content, an understanding of education, and knowledge of our students is where we must all practice the art of teaching and help our students engage in discovery.
Christine Anne Royce, a professor of education at Shippensburg University, where she also serves as department chair. For the past two years, she also has codirected the Master of Arts in Teaching in Science Education program and focuses on the integration of science and literacy for her research area. Royce earned an EdD in science education from Temple University and has taught science at all levels. She has served on the NSTA Board and Council. Email her at caroyce@aol.com or follow her on twitter @caroyce.
Editor’s Note
This article was originally published in the September issue of NSTA Reports, the member newspaper of the National Science Teachers Association (NSTA). Visit the NGSS@NSTA Hub at http://www.nsta.org/ngss to access NSTA’s growing collection of NGSS resources.
Follow NSTA