Middle School | Formative Assessment Probe
By Page Keeley
Assessment Physical Science Middle School
This is the new updated edition of the first book in the bestselling Uncovering Student Ideas in Science series. Like the first edition of volume 1, this book helps pinpoint what your students know (or think they know) so you can monitor their learning and adjust your teaching accordingly. Loaded with classroom-friendly features you can use immediately, the book includes 25 “probes”—brief, easily administered formative assessments designed to understand your students’ thinking about 60 core science concepts.
The purpose of this assessment probe is to elicit students’ ideas about temperature change in a system. The probe is designed to find out whether students recognize that heat moves from the warm water to the cool water until they both reach the same temperature. Additionally, students’ explanations reveal whether they use an addition, subtraction, or averaging strategy to determine the resulting temperature.
P-E-O
Heat, transfer of energy, temperature, thermal equilibrium
The best response is B: 30 degrees Celsius. (In actuality, it would be slightly less, because a small amount of energy is transferred from the water to the glass and the surrounding environment in the process.) Temperature is a measure of the average motion of the particles that make up the water. The two separate samples of water are at different temperatures, meaning the average energy of the particles is less in the cooler (10°C) sample. When the cooler water and the warmer water are mixed together, a transfer of energy occurs between particles when they come in contact with each other. The flow of thermal energy via heat moves from the molecules in the warmer water to the molecules in the cooler water until they have the same average energy (temperature). Because the two samples of water are identical in volume, the thermal equilibrium that is reached is an average of the two temperatures.
Elementary Students
In the elementary grades, students use the terms heat, warm, hot, cool, and cold to describe phenomena and interactions with objects and their surroundings. They have experiences mixing same and different amounts of hot and cold water together or putting ice in warm water and finding the resulting temperature. Their experiences with materials and temperature are primarily observational. They learn how to measure temperature with a thermometer. Mixing hot and cold water and predicting and observing the resulting temperature is observational and should initially be approached qualitatively using words like warmer, cooler, hotter, or colder. The emphasis should be on exploring how heat spreads from warmer objects or materials to cooler and how objects or materials of different temperatures can eventually come to the same temperature. Although students at this grade level are not expected to know the difference between heat and temperature, it is helpful to refer to energy transfers in terms of gaining or losing energy in order to help students overcome their intuitive notion that cold is a substance that spreads like heat. The emphasis should be on tracking where the energy manifested as heat goes.
Middle School Students
In middle school, students shift their focus from observing what happens when warm and cold water are mixed together to explaining what happens in terms of thermal energy moving from warmer objects or materials to cooler objects or materials via heat. This is also a time when the term thermal energy is introduced. Students begin to connect the idea of heat with a movement of thermal energy. As middle school students develop a model of particle energy transfer, they can begin to connect the movement of warmer matter to cooler matter to the concept of conduction and convections as mechanisms for the transfer of thermal energy between atoms or molecules. Energy transfer now shifts to quantitative measurements as students see that an energy loss in one material is a gain in energy for the other and that the resulting temperature can be predicted and measured. This probe targets the grade-level expectation of understanding that energy is transferred from warmer regions or objects to cooler ones and that once energy is no longer transferred between objects or materials, they reach thermal equilibrium.
High School Students
Students at this grade level build on their experiences with energy transfer in middle school to investigate a variety of energy transfers more systematically and quantitatively, collecting evidence that confirms that energy is conserved during energy transfers and recognizing the loss of some energy through dissipation. They should be able to predict and quantitatively model how energy moves within a system and toward a more stable state.
This probe is best used with grades 5–12 and can be modified for lower elementary grades by changing the answer choices to qualitative descriptors such as (A) A warmer temperature than both cups, (B) A cooler temperature than both cups, and (C) A temperature somewhere between the two cups, followed by asking students to predict the final temperature in their explanation. You may wish to use visual props for this probe to demonstrate the two equal volumes, the pouring of one cup into another, and mixing the combination of the two samples.
Brown, P. 2011. Teaching about heat and temperature using an investigative demonstration. Science Scope 35 (4): 31–35.
German, S. 2016. Predicting, explaining, and observing thermal energy transfer. Science Scope 40 (4): 68–70.
Konicek-Moran, R. 2013. How cold is cold? In Everyday physical science mysteries: Stories for inquiry-based science teaching, R. Konicek- Moran, 113–122. Arlington, VA: NSTA Press
NGSS Archived Webinar: Core Ideas—Energy, www. youtube.com/watch?v=E-97mwnhl40&index= 8 & l i s t = P L 2 p H c _ B E F W 2 J j W Yu a 2 _ z3ccHEd6x5jIBK. Nordine, J. 2016. Teaching energy across the sciences K–12. Arlington, VA: NSTA Press.
Nordine, J., and D. Fortus. 2017. Core idea PS3: Energy. In Disciplinary core ideas: Reshaping teaching and learning, ed. R. G. Duncan, J. Krajcik, and A. E. Rivet. Arlington, VA: NSTA Press.
NSTA Science Object, Energy: Thermal energy, heat, and temperature. http://common.nsta.org/ resource/?id=10.2505/7/SCB-EN.3.1.