By Peggy Ashbrook
Posted on 2011-03-24
The children whom I see once-a-week in an hour-long afternoon science enrichment class show growth in their exploration of building using ramps and blocks to create pathways for balls. These materials have been available each session for about four months. An hour once a week is not much time to explore a set of materials but the children seem to be able to pick up where they left off the last time. They enjoy making the balls go into a goal, creating elaborate structures around a few ramps, and making especially long ramps. Their work had seemed stalled so I assigned a task before building. I wanted to see how the children, ages 3.5-5, would approach the difficult task of drawing the relationship between two 3-D objects so I asked them to make a set-up with any two wooden (unit) building blocks and draw a picture of it. Most of the children made simple line drawings of one face of the blocks with varying degrees of accuracy (some were more oval than rectangular), and a few children traced the shapes. I hoped that this practice drawing would help them begin to think of how 3-D objects can be placed together and that thinking before building might lead to new structures.
(Note: In talking with the children I was searching my brain for the name given to the rectangular block and couldn’t come up with it. Not a cube but a ________. An online resource, The Annenberg Foundation’s Interactives: Geometry 3-D Shapes, gave me the word I was looking for. These unit blocks are polyhedrons, 3-D shapes whose faces are polygons, and specifically right prism polyhedron because the opposite sides are equal and they meet at right angles. The general term “rectangular prism” is appropriate. The site has a cool section where these shapes are shown unfolded.)
Nora S. Newcombe’s article in the Summer 2010 American Educator, Picture This: Increasing Math And Science Learning By Improving Spatial Thinking, has a fascinating discussion about spatial thinking skills and how to improve spatial thinking with some simple techniques. Newcombe asks, “Since spatial thinking is associated with skill and interest in STEM fields (as well as in other areas, such as art, graphic design, and architecture), the immediate question is whether it can be improved. Can we educate children in a way that would maximize their potential in this domain?” “In addition to practicing spatial thinking tasks like those shown in the box on page 30, well-conceived symbolic representations, analogies, and gestures are also effective in improving one’s spatial thinking ability.” She describes a study that shows that parents using spatial words like outside, inside, under, over, around, and corner help preschoolers improve their spatial thinking. Although “precise answers are not yet possible,” Newcombe says, “However, we are beginning to have some good ideas about where to start, especially with preschool and elementary students.”