Skip to main content
 

Ed News: Climate Science Meets A Stubborn Obstacle, Students

By Kate Falk

Posted on 2017-06-09

News Roundup banner

This week in education news, what President Trump’s decision to withdraw from the Paris accord means for teachers; aquariums and zoos stepping up to try and make climate change easier to teach; the Nebraska Dept. of Education wants the public’s input to revise the state science standards; new survey shows room for STEM education improvement; senators call out phony science materials sent to teachers; and exploration is the gateway to magically transforming circle time into toddlers learning science.

Climate Science Meets A Stubborn Obstacle, Students

To Gwen Beatty, a junior at the high school in this proud, struggling, Trump-supporting town, the new science teacher’s lessons on climate change seemed explicitly designed to provoke her. So she provoked him back. Click here to read the article featured in The New York Times.

What Trump’s Decision To Withdraw From The Climate Accord Means For Teachers

President Donald Trump announced that the United States would withdraw from the Paris climate accord, the landmark pact that nearly 200 nations signed two years ago in an effort to curb global warming. When the Paris agreement was forged, that event caused at least some teachers to reconsider how they had been approaching climate change in the classroom. Noah Zeichner, a Seattle social studies teacher, wrote on the Center for Teaching Quality blog that he had previously “felt some pressure … to present the other side. … But facilitating a debate about the causes of climate change was probably the wrong move.” And it seems teachers are already now grappling with how to present the recent overhaul in the federal government’s stance on environmental issues. Click here to read the article featured in Education Week.

Climate Change Is Tough To Teach, So Aquariums And Zoos Are Stepping In

Climate change is one of those topics that can be difficult to teach. It’s complex. The science around it is evolving, and then there’s the contentious political debate over it as evidenced by the fallout this week from President Donald Trump’s decision to pull the U.S. out of the Paris climate agreement. All of that combines to make it a subject some educators feel uncomfortable tackling. The New England Aquarium in Boston has founded a national network to try to make this tough subject easier to teach and to ensure that more members of the public, including students on class visits, get a complete picture of the climate-change problem and what can be done to solve it. Click here to read the article featured in Education Week.

Illinois Years Behind In Scoring State Science Tests; Officials Blame Budget

Three years after Illinois made a bold change in how science would be taught and tested, little is known about how students have performed because neither schools nor families have seen state science exam scores since 2013-14. But the delay in science scores — blamed largely on state budget woes — is unusual and problematic, given that federal law requires states to administer science exams at least three times from grade school through high school and make the results public. Click here to read the article featured in the Chicago Tribune.

Dept. Of Education Wants Public’s Input To Revise Science Standards

The Nebraska Department of Education says proposed science standards are a change in thinking. The department is in the process of updating the standards right now. What’s proposed focuses more on asking students to “think like a scientist” rather than memorize content. Click here to read the article featured on NTV.com

Best State-Level Practices for Teacher Leadership Outlined in Report

How can states meaningfully engage teacher leaders? A new policy brief from Chiefs for Change, a nonprofit organization for district and state education chiefs, outlines a broad framework for what makes an effective, sustainable teacher leadership system. Click here to read the article featured in Education Week TEACHER.

Survey Shows Room For STEM Education Improvement

A recent survey by Lockheed Martin asked middle and high school teachers about their students’ interest in STEM subjects, along with how their schools are preparing students, in an attempt to illustrate country’s potential preparedness to fill STEM workforce needs that could send humans to Mars. The survey found that 25% of educators said their current school curriculum is not adequately preparing students for a STEM career, and only 23% say their school is properly preparing students for the ability to pursue a career in space exploration, while 31% of educators reported that budgeting and resources at their schools were adequate to prep students for STEM careers. Click here to read the article featured in Education DIVE.

Michelle Obama: You Need Women At The Decision Table

Michelle Obama had words of advice and inspiration for several thousand students, developers and entrepreneurs at a private Q-and-A session at the Apple Worldwide Developers Conference in San Jose. In a sit-down interview with Lisa Jackson, Apple’s vice president of environment, policy and social initiatives, Obama touched on diversity in tech, STEM education, innovation and leadership. Click here to read the article featured in USA Today.

In Letter To DeVos, Senators Call Out Phony Science Materials Sent To Teachers Nationwide

Senators Sheldon Whitehouse (D-RI), Brian Schatz (D-HI), Elizabeth Warren (D-MA), and Edward J. Markey (D-MA) wrote to Education Secretary Betsy DeVos today to highlight bogus materials sent by the Heartland Institute, a group with a long record of climate denial, to more than 300,000 public school science teachers across the country. Click here to read the press release.

Through Observation And Play, Toddlers Take On Science

Ashley Barajas watched intently as toddlers stacked foam blocks and examined colorful cylinders. It may look like child’s play, but Barajas, an early education science specialist, knows that exploration is the gateway to magically transforming circle time into toddlers learning science. At a recent playgroup in Oakland, she led the way by example. Click here to read the article featured in EdSource.

STEM Learning – International Best Practice

Queensland science teacher Sarah Chapman is passionate about engaging youngsters in STEM (science, technology, engineering and mathematics) education and has travelled the world gathering evidence of international best practice. It’s a research journey that’s taken her to Singapore, Finland, the United Kingdom, United States and New Zealand, visiting schools, businesses, tertiary institutions, STEM outreach programs, peak bodies and government departments. “The idea was to gain expertise and best practice across the whole STEM ecosystem, not just in schools,” Chapman tells Teacher. Click here to read the article featured in Teacher magazine.

National Science Competition Winners Agree Technology Is Taking Over

Milan Haiman, a 16-year-old high schooler from New York City, says there’s no reason to fear the robot/computer takeover. “Computers are replacing humans,” he says. “Yet computer science opens up new possibilities for everyone.” But Milan says not all jobs will be replaced by technology: The world will need humans to engineer and repair robots in the future. And those humans will need STEM (science, technology, engineering, mathematics) education, he adds. Click here to read the article featured in The Washington Times.

Stay tuned for next week’s top education news stories.

The Communication, Legislative & Public Affairs (CLPA) team strives to keep NSTA members, teachers, science education leaders, and the general public informed about NSTA programs, products, and services and key science education issues and legislation. In the association’s role as the national voice for science education, its CLPA team actively promotes NSTA’s positions on science education issues and communicates key NSTA messages to essential audiences.

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.


Follow NSTA

Facebook icon Twitter icon LinkedIn icon Pinterest icon G+ icon YouTube icon Instagram icon

 

News Roundup banner

 

STEM Sims: Dronopter

By Edwin P. Christmann

Posted on 2017-06-07

Stem Sims: Dronopter

Introduction

STEM Sims provides over 100 simulations of laboratory experiments and engineering design products for application in the STEM classroom. One particular simulation found on this site, Dronopter, challenges students to build a drone in the form of a quadcopter (helicopter with four motors). Subsequently, students design, build, and fly their very own quadcopter in order to complete the simulation. This simulation’s mission is to challenge students to build the most efficient drone possible and fly it through a course of obstacles to reach its destination. In doing so, students can incorporate and develop STEM competencies in mathematics, science, and mechanical knowledge to complete this simulation. Dronopter is aligned with national (NGSS) standards  and is compatible with state standards as well:

  • MS-PS2.B – Types of Interactions
  • MS-PS3.C. – Relationship Between Energy and Forces
  • MS-ETS1.B – Developing Possible Solutions

The simulation provides students with a brochure (see link below) with a pre-assessment quiz as well as introductory information about the uses of drones as well as basic concepts related to flight. Dronopter engages students who have a variety of learning styles by having them build and test their design. Moreover, students who struggle with science concepts but have interest in mechanical or mathematical areas will have a chance to contribute to the experiment. Students will utilize metacognitive strategies to determine why any given test failed and choose new strategies to try in future attempts.

Brochure: https://stemsims.com/simulations/dronopter/brochure/brochure.pdf?version=2017-01-10

 

Sample Assessment

STEM Sims provides a lesson plan for this simulation (see link below); once again providing an excellent learning opportunity for students while minimizing the planning needed by teachers.

Lesson: https://stemsims.com/simulations/dronopter/lessons/lesson-1.pdf?version=2017-01-10

Conclusion

Dronopter is an excellent learning opportunity for students that is challenges students to design a drone capable of flying through a difficult course. Students will learn about STEM concepts in a manner that brings enjoyment to learning concepts that are meaningful and relevant. Please consider taking the opportunity for a free trial to evaluate this simulation for your classroom to determine where this simulation fits into your classroom’s instruction.

For a free trial, visit https://stemsims.com/account/sign-up

Recommended System Qualifications:

  • Operating system: Windows XP or Mac OS X 10.7
  • Browser: Chrome 40, Firefox 35, Internet Explorer 11, or Safari 7
  • Java 7, Flash Player 13

Single classroom subscription: $169 for a 365-day subscription and includes access for 30 students and 100 simulations.

Product Site: https://stemsims.com/

Edwin P. Christmann is a professor and chairman of the secondary education department and graduate coordinator of the mathematics and science teaching program at Slippery Rock University in Slippery Rock, Pennsylvania. Anthony Balos is a graduate student and a research assistant in the secondary education program at Slippery Rock University in Slippery Rock, Pennsylvania

Stem Sims: Dronopter

Introduction

 

#NSTA17 Meet Me In The Middle Day Re-Cap

By Korei Martin

Posted on 2017-06-07

There was excitement in the air as the conference attendees started pouring into the conference center in Los Angeles. Standing at the foot of the escalators, in bright green t shirts, were members of the National Middle Level Science Teacher Association (NMLSTA) and the NSTA Middle Level Committee handing out postcards inviting middle school teachers to attend the annual Meet Me in the Middle Day and introducing them to this fabulous organization. Founded in 1989 by a group of educators dedicated to represent the unique needs of middle school teachers, NMLSTA and the NSTA Middle Level Committee sponsors this day full of resources, professional networking, sharing of stories and winning great prizes for the classroom.

Friday morning the balloons went up, the posters went out and the people started coming! Over 400 middle school science teachers crowded in 24 roundtables, 15 workshops and visited over 75 share-a-thon presenters. Topics ranged from NGSS, safety, special education to earworms, photosynthesis and engineering. My room was packed! What a thrill to present to these energetic and enthusiastic teachers from around the country.

At the end of the day, I was tired. Board meetings, set up, several presentations were over. My bright green shirt was a little wrinkled, my feet were pretty sore and I thought about a comment a colleague had said to me before I left. He’d asked, “Do you get paid for this?”. Nope. My school had paid for the conference registration, but the airfare,hotels, food, etc., well, that was all mine. “Why then”, he had asked, “Do you do it? Why would you spend all that time preparing presentations and spend all that money and get nothing for it?”.

That was actually a difficult question. Oh, not because I don’t know why I go to these meetings (four national, one regional and four state meetings in four years), but because I cannot imagine why anyone WOULDN’T attend.

Quite simply, attending professional meetings gives me a chance to grow. I am THE Science teacher in our little junior high and I do not have in school science colleagues to share with, plan with or learn from. Attending meetings, presenting, serving on the board, gives me a chance to validate that what I am doing is right. I get to share my experiences and hear about how others teach the same topics. I get to compare – class sizes, budgets (or lack of budgets), debate block vs regular schedules or whether or not to have a science fair. I get to help make decisions. I learn about professional development opportunities, grant funding and career options. All this-in a city other than my own that I can also explore through field trips, dining with friends and touring on my own.

So why do I do it? Well, I must admit to liking the bright green shirt, but even more, I like what it allows me to become – a better science teacher.

 


Get more involved with NSTA! 

Join today and receive Science Scope, the peer-reviewed journal just for middle school teachers; connect on the middle level science teaching list (members can sign up on the list server).


The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Future NSTA Conferences

2017 STEM Forum & Expo
Kissimmee/Orlando, July 12–14

2017 Area Conferences

Baltimore, October 5–7
Milwaukee, November 9–11
New Orleans, Nov. 30–Dec. 2

 

NSTA Retiring President Mary Gromko Thanks Retiring Committee Members

By Guest Blogger

Posted on 2017-06-03

Thank You note

As Retiring President of the National Science Teachers Association, I have witnessed an outpouring of dedication and energy from thousands of science educators across this nation. It is a number based on observations and participation. I would like to take this opportunity to share a BIG THANK YOU to them all. And I’d like to start by calling attention to those volunteers who took on the responsibility of hosting and coordinating a regional science conference, a national science conference, and/or a state science conference. Collaboration and team work was vital and that was so exemplary with the outstanding success demonstrating the collegial participation at all those events.

As President last year, I also witnessed dynamic volunteer participation from just about the best elected/appointed Board, Council, District Directors, Committee, and Advisory Board members that any leader could possibly dream about. I would like to share another BIG THANK YOU to these members who have the knowledge of what to do and how to do it, the dedication to science education for ALL, and the energy to get the job done. The most important criteria for this phenomenal group is PASSION. These science educators must have a great passion for science and science education at all levels, a passion for bringing divergent groups of people together based on common themes on scientific literacy, and a passion for developing a synergy of best practices.

But to achieve the goals for NSTA in stimulating, improving, and coordinating science teaching at all levels of instruction and to achieve the mission of promoting excellence and innovation in science teaching and learning, we need to have the “glue’ that joins these parts into a common whole. I would like to share a most enthusiastic BIG THANK YOU to the staff at NSTA. These are the staff personnel who plan and coordinate vibrant science education activities and answer every and all questions for information that is sought by the membership; who help build the foundations for coordinating the presentations and science exhibitors for all the conferences; who coordinate the research based professional development for the membership; who foster communication using print and other digital resources; who advocate for best scientific practices with the legislature; who develop programs that foster leadership with and among other science organizations; who publish the highest quality science/science education resources; who engage teachers through the Learning Center with courses, on-line e books, and other resources that bring science to life; who work with outside agencies to develop competitive programs in science and engineering for our science students across the country; who work with outside agencies to celebrate the outstanding achievement of science teachers,

The National Research Council, in a recent report, has explained that deeper learning is gained through facilitating opportunities. NSTA does just that. We are the world’s leader is facilitating opportunities for students and for science educators. My presidential theme for last year was to Connect, Collaborate, Celebrate. Teachers Are The Key. Our NSTA members have made that a reality. So finally, I say a BIG THANK YOU to the members of our organization who made my year as President most rewarding.

Below, we especially recognize the Retiring Committee, Advisory Board, and Review Panel Members below for their service to NSTA for the time period of June 1, 2016 to May 31, 2017.

College: Richard Jones, Krassi Lazarova, Keith Prokopp

Coordination: James Blake, Jeffrey Patterson, Mary Poarch

High School: Emily Meyer, Christopher Nilsen, Eric Wilson

Informal: Alex Dzurick, Karen Hays, Sharon Morrell

Middle Level: Zoe Evans, Elizabeth Orlandi, Mary Patterson

Multicultural: Olukayode Banmeke, Deena Gould, Carol Suppes

Preschool-Elementary: Patti Born-Selly, Anne Durrance, Rebecca Kurson

Preservice: Patricia Bricker, Jeanelle Day, Sumi Hagiwara, Elizabeth Lewis, Elaine Scarvey

NSTA Teacher Accreditation: Jeanelle Day, Joseph Zawicki, Eric Pyle

Professional Development: Aoko Hope, Nancy Movall, Brian Terry

Research: Kathy Malone, James McDonald, Brian Plankis

Audit: Susan German

Awards: Olga Hunt, Ann Lopez, Diana Wiig

Budget: Christine Royce

Nominations: Michelle Daml, Elsa Bailey, Janice Koch, Barbara Morrow, Emily Schmitt Lavin

Advisory Board, Aerospace: Barbara Gosney, Paul Nordhaus, Katrina Lynn Robinson

Conference: Ana Appel

Development: Alan McCormack

NSTA members who would like to serve on the board or council can apply here. In the fall, we will open applications for our committees, advisory boards, and review panels, and information about them can be found here.


The mission of NSTA is to promote excellence and innovation in science teaching and learning for all. Learn more about NSTA Membership.Mary Gromko Mary Gromko is the retiring president of the National Science Teachers Association (NSTA). She began serving her one-year term on June 1, 2017. Gromko is currently a retired science educator in Colorado Springs, Colorado.

Follow NSTA

Facebook icon Twitter icon LinkedIn icon Pinterest icon G+ icon YouTube icon Instagram icon

Thank You note

 

Ed News: A Glimpse Into A Next Generation Science Classroom

By Kate Falk

Posted on 2017-06-02

News Roundup banner

This week in education news, a preview of what the science standards look like in the classroom; California students go online in record numbers to take standardized tests aligned with the Common Core; computational thinking brings extensive learning benefits; virtual reality offers real rewards in education; President Trump’s school choice plan could stall; Idaho lawmaker praises new proposed standards; and DeVos releases statement supporting President Trump’s decision to pull out of the Paris climate agreement.

Water Filters And Space: A Glimpse Into A Next-Generation Science Classroom

Sometimes showing is easier than telling. That’s certainly the case in trying to capture the Next Generation Science Standards—the K-12 learning benchmarks that 18 states and the District of Columbia have adopted and are now using in classrooms. Unlike some previous science standards that focused on the facts, these standards emphasize action. They ask students to construct models, interpret data, design structures, and make arguments. Click here to read the article featured in Education Week.

CA Students Go Online In Record Numbers To Take Common Core-Aligned Tests

Over the past several weeks, California students in record numbers have been taking once controversial standardized tests aligned with the Common Core. This is the third year that students in the grades 3-8, as well as 11th-graders, have taken the full battery of tests based on new Common Core standards in math and English language arts. The tests can take up to six hours to complete for students in grades 3-5, six-and-a-half hours for students in grades 6-8 and seven-and-a-half hours for 11th-graders. However, there is no time limit on the tests which are part of the California Assessment of Student Performance and Progress. The system also includes new pilot tests administered to students in grades 5, 8 and one year of high school based on the Next Generation Science Standards. Click here to read the article featured in EdSource.

Thinking Like A Computer Brings Wide Learning Benefits

A large gap between the number of computer science graduates and available jobs has led an increasing number of districts to boost instruction in computational thinking. The concept refers to the thought process of expressing a solution to a problem with a series of sequenced steps. It’s a critical part of computer programming and it can assist learning in all disciplines. Click here to read the article featured in District Administration.

Rethinking The Metaphors We Teach By

As teachers, teacher educators, and school leaders, we often discuss the implications of policies and working conditions on our ability to teach effectively. What we don’t say is that our common ways of describing teaching and learning—often metaphorical—pose hidden obstacles. Click here to read the article featured in Education Week.

Virtual Reality Offers Real Rewards In Education

The architecture, construction, engineering and health science industries already use virtual reality, and educators throughout the country are beginning to consider ways to introduce virtual, augmented and mixed reality to prepare students for college and the workforce. “It’s important to teach students early how to interact and engage with this technology because it’s going to be part of their professional lives,” says Mark Cheben, global marketing director of EON Reality. Click here to read the article featured in District Administration.

Trump’s School Choice Plan Could Quickly Stall In Washington, Analysts Say

Plans to expand school choice from President Donald Trump may be generating a lot of attention—but they should be taken with a dose of political reality, and not obscure other key issues. That was one of the main messages from a panel of K-12 advocates discussing the changing politics of education at the annual conference of the Education Writers Association here on Wednesday. Click here to read the article featured in Education Week.

GOP Lawmaker Praises Proposed New Science Standards

One Republican member of the House Education Committee said he is impressed with proposed academic science standards that a committee of teachers released last month. But a Boise Democrat, who pushed for an open dialogue on science and climate change, said the decision to remove references to global warming from the standards amounted to partisan politics and science denial. Click here to read the article featured in Idaho Ed News.

New Guide On Undergraduate STEM Education

The Association of American Universities, which works, in part, to improve math, science, engineering and technology education for undergraduates, released a report on “Essential Questions and Data Sources for Continuous Improvement of Undergraduate STEM Teaching and Learning.” It includes questions to aid faculty discussions on STEM education at the course, department, division and campus level on pedagogy, scaffolding and cultural change. Click here to read the article featured in Inside Higher Ed.

Betsy DeVos Applauds Trump For Pulling U.S. Out Of Historic Climate Accord

President Trump on Thursday announced his decision to pull out of the landmark Paris climate agreement — the one that virtually all countries in the world signed onto except Syria and Nicaragua — and his education secretary, Betsy DeVos, was part of the cheering section. Click here to read the article featured in The Washington Post.

Stay tuned for next week’s top education news stories.

The Communication, Legislative & Public Affairs (CLPA) team strives to keep NSTA members, teachers, science education leaders, and the general public informed about NSTA programs, products, and services and key science education issues and legislation. In the association’s role as the national voice for science education, its CLPA team actively promotes NSTA’s positions on science education issues and communicates key NSTA messages to essential audiences.

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.


Follow NSTA

Facebook icon Twitter icon LinkedIn icon Pinterest icon G+ icon YouTube icon Instagram icon

 

News Roundup banner

Picture-Perfect STEM Lessons, 3-5: Using Children’s Books to Inspire STEM Learning

"Teachers in our district have been fans of Picture-Perfect Science for years, and it’s made a huge impact on how they fit science into their school day. We are so excited to do more of the same with these Picture-Perfect STEM books!"
—Chris Gibler, elementary instructional coach, Blue Springs School District in Missouri

"This lively mix of picture books and engaging, standards-based STEM content will be a powerful tool to inspire STEM learning."
—Andrea Beaty, author of Ada Twist, Scientist; Rosie Revere, Engineer; and Iggy Peck, Architect
"Teachers in our district have been fans of Picture-Perfect Science for years, and it’s made a huge impact on how they fit science into their school day. We are so excited to do more of the same with these Picture-Perfect STEM books!"
—Chris Gibler, elementary instructional coach, Blue Springs School District in Missouri

"This lively mix of picture books and engaging, standards-based STEM content will be a powerful tool to inspire STEM learning."
—Andrea Beaty, author of Ada Twist, Scientist; Rosie Revere, Engineer; and Iggy Peck, Architect
 

Cooperative grouping

By Mary Bigelow

Posted on 2017-05-31

In science classes, do students work better in random groups or with their friends? I’m a student teacher in middle school. – S., Arizona

Most teachers will tell you there is no best way to set up groups. There are many variables, including the age of the students, the structure of the investigation, the students’ experience levels, and the classroom social climate.

Thoughts from my experience in middle school:

  • Use random assignment for the first few activities. You can observe the students’ interpersonal skills, work habits, and which students do and do not work well together.
  • With student-selected groups, I was concerned about the students who were selected last (or not at all) and that students wouldn’t learn how to work with a variety of people. Sometimes friends would focus more on social aspects.
  • I found heterogeneous grouping by ability worked best for my classes most of the time, and single-gender groups provided more opportunities for equitable student participation.
  • I usually structured the groups, changing them periodically. Sometimes, students with an intense interest on a topic worked together.
  • Although I rotated cooperative roles, I would usually try to keep the groups intact for a unit. This also saved time, because the students knew who their partners were and which lab table was theirs.
  • Check with the teacher of special needs students to determine any accommodations specified in their individual education plans.
  • Regardless of how you structure the groups, you may need to model what cooperative behavior looks like, and work with them on appropriate language.

You have a great opportunity for action research as you try different configurations and note which ones seem to work better for your students.

 

Photo: https://www.flickr.com/photos/ielesvinyes/6725332973

In science classes, do students work better in random groups or with their friends? I’m a student teacher in middle school. – S., Arizona

 

Cars and plants: following children's interests and teaching science

By Peggy Ashbrook

Posted on 2017-05-29

Front of a car

Regardless of the curriculum, it is important to remember that every lesson portrays an image of science to students and conveys information about what science is and how science works.”

-Deborah L. Hanuscin and Eun J. Lee, Perspectives: Helping Students Understand the Nature of Science. March 2009 Science and Children 46(7): 64-65

One of the four-year-old preschoolers I taught could name almost every model and make of car that passed us on our walk to the park and he wasn’t reading the words on the back of the car. He had spent time with his father, learning to classify them by looking at cars, and talking about them and their identifying features. I could not join in his discussion because I was woefully ignorant of what makes a Chevy a Chevy. But I knew many names of plants in the park and their lifecycle and was eager to share that information with the children.  

When children are enthralled with a topic that is not familiar to us, we may seek to direct their interest to a topic we know more about. Sometimes the information is important for getting along with others, such as taking turns at the drinking fountain. Other times, it is a teacher’s favorite topic, like plants are for me. Acknowledging children’s interests meant switching up my plans. Our class didn’t have a safe front door stoop for observing passing traffic, but we did have a collection of mini model cars that also represented a variety of makes and models. These models served to introduce the topic of using models to represent real objects and ideas—one of the NGSS Science and Engineering Practices (NSTA Lead states)—and to introduce the topic of making observations, which is part of the nature of science (NOS). The NOS is usually described as having six to eight aspects, including understanding the difference between observation and inference and that scientific knowledge is both tentative and reliable. (Lederman and Lederman 2004; Quigley 2011).

Through observation of real cars and videos, children knew that to make a real car move, a key is needed to start it, and that some cars are designed to go faster than others. They inferred that the models of “fast” cars would go faster on ramps they constructed in the block area based on their prior experience of viewing those cars in videos. They revised their understanding of how those model cars moved during the many days they tested their ideas, rolling the cars down constructed ramps. Through their explorations of the motion of objects on inclined planes they were beginning to understand that their initial understanding of object motion was tentative and could change with additional experience and testing. There were many variables: wheel size, weight of the model car, distribution of mass, and smoothness of the movement of the axles. The preschool children were not conducting controlled experiments, but the testing by different young scientists reliably produced the same results—certain cars always got down the ramps faster than other cars—and the children revised their understanding.

Dandelion plant viewed from aboveAt the park the children also used the NGSS practices of analyzing and interpreting data and using mathematics and computational thinking as they collected dandelion buds in varying states of bloom—unopened buds, full open yellow blooms, and spherical seed heads—learning about a plant life cycle as we explored the park.

Ashbrook, P. 2014. The Early Years: The Nature of Science in Early Childhood. Science and Children. 52(1): 24-25.

Lederman, N.G., and J.S. Lederman. 2004. Revising instruction to teach nature of science. The Science Teacher 71 (9): 36–39.

NGSS Lead States. 2013. Next Generation Science Standards: For states, by states, APPENDIX F – Science and Engineering Practices in the NGSS. Washington, DC: National Academies Press. 

Quigley, C., G. Buck, and V. Akerson. 2011. The nature of science challenge. Science and Children 49 (2): 57–61.

WGBH Educational Foundation, Peep and the BIG Wide World. Explore Ramps. Week 2: Building More Ramps, Day 5—Watch and Discuss: Ramp Rolling

Front of a car

Regardless of the curriculum, it is important to remember that every lesson portrays an image of science to students and conveys information about what science is and how science works.”

 

Engineering activities

By Mary Bigelow

Posted on 2017-05-28

Are you interested in enhancing your STEM teaching repertoire? Or in integrating engineering concepts but not sure where to start? There have been some new features added to a free resource which is appropriate for in-school and informal K-12 educators.

The TeachEngineering digital library is an online collection with more than 1,500 engineering curricular materials that were created and tested in classrooms through teacher/faculty partnerships at engineering colleges and funded by the National Science Foundation. The focus of these materials is to support K-12 STEM literacy through the lens of engineering—which involves making real-world connections.

These comprehensive STEM lessons and hands-on activities use engineering to integrate science (life, earth and physical science) and math via hands-on inquiry-based activities that are aligned to NGSS.  TeachEngineering’s curricular materials are presented in five different formats: lessons, hands-on activities, units, “sprinkles,” and maker challenges.

The lessons and hands-on activities provide standard components such as learning objectives, correlations to educational standards, background information, activity prep and procedures, vocabulary, engineering connections, embedded assessment activities, and student worksheets and handouts. Units are groupings of lessons and activities on a common theme or topic.

Some of the most popular activities are also presented as sprinkles–60-minute-or-less “tastes of engineering” that are designed for quick prep by teachers and non-teachers and are appropriate for afterschool clubs and other informal environments (They are also available in Spanish).

Maker Challenges are a new feature providing teacher-prompts for open-ended, self-directed challenges that support the popular maker movement. Through these challenges, students tinker and create as they work through the engineering design process.

It’s easy to explore the collection from the home page for the monthly Editor’s Pick, most popular (elementary, middle, and high school levels), most shared, and recently added. You can use the filtering interface to search and browse the collection by topic, format, grade level, subject area, time required, and/or NGSS.

These resources are complete enough that even if you never studied engineering, you and your students can be involved in interesting problem-solving activities that incorporate real-world applications. Many of the activities and units are in the SciLinks database, too.

Photo: https://www.flickr.com/photos/lalunablanca/24455707/

 

Are you interested in enhancing your STEM teaching repertoire? Or in integrating engineering concepts but not sure where to start? There have been some new features added to a free resource which is appropriate for in-school and informal K-12 educators.

 

Explore the Power of Investigating

By Carole Hayward

Posted on 2017-05-28

Power of InvestigatingHow can a teacher build and maintain a learning environment that will help students investigate meaningful questions? That’s the central question of The Power of Investigating: Guiding Authentic Assessments by Julie V. McGough and Lisa M. Nyberg.

The pedagogical picture book for K–5 teachers provides practical advice for building investigations that integrate both STEM and literacy skills. It’s the second book in the NSTA Press Powerful Practices series.

Investigations serve to enrich the curriculum and make it real for students. “Hands-on, meaningful investigations give life to learning, inspire questions, and engage students and teachers in thinking,” McGough and Nyberg explain in Part 1.  From words and images on a page to active engagement, investigations transform learning experiences from being two-dimensional to being three-dimensional.

The book focuses on how teachers can use investigations to support a curriculum aligned with the science and engineering practices, disciplinary core ideas, and crosscutting concepts that are outlined in the Next Generation Science Standards (NGSS).

“The Powerful Practices instructional model provides a canvas to integrate the questions, investigations, and assessments that help teachers and students make sense of the content. Integration of those three components offers a means to engage students and teachers in the dynamic experience of life and learning,” the authors write.

The Power of Investigating offers valuable insights, including practical strategies for helping young scientists investigate meaningful questions and communicate their findings, ideas for finding the resources you need to undertake investigations in your classroom, models of five types of investigations that can help to improve your students’ literacy skills, and tips for maximizing instructional time by integrating the NGSS, Common Core State Standards, your state’s science standards, and best practices in STEM education.

The book mixes text, lesson ideas, photos, and activities with video clips that you can access using a QR code. For example, in Part 1, students learn about worms. In their science journals students can record their initial observations. They can make closer observations using a microscope to study the features of the worm, noticing the worm’s rings, the texture of its skin. Students can draw pictures of their observations and read a nonfiction text that introduces concepts and vocabulary. Then, in a class discussion students can share their observations and ask questions, like “What are the lines on a worm for?” or “How do worms move without feet?”  Also, the bonus video explains how three-dimensional learning experiences can help to build literacy skills.

The worm investigation allows students to learn while getting their hands dirty. It’s fun and engaging and guaranteed to be more memorable than just skimming a page in a textbook.

Learn more by reading the sample chapter, “How Do I Integrate Investigations?”

This book is also available as an e-book.


Save Now on Book Purchases!

Between now and May 31, 2017, save $15 off your order of $75 or more of NSTA Press books or e-books by entering promo code BOOK17 at checkout in the online Science Store. Offer valid only on orders placed of NSTA Press books or e-books on the web and may not be combined with any other offer.


 

Power of InvestigatingHow can a teacher build and maintain a learning environment that will help students investigate meaningful questions? That’s the central question of The Power of Investigating: Guiding Authentic Assessments by Julie V.

Subscribe to
Asset 2