Skip to main content
 

Next Gen Navigator

Supporting Equity in the Classroom

Posted on 2020-01-30

 

Achieving Equity Through Assessments

By Laura Littrell and Kevin Williams

Posted on 2020-01-29

Our school requires all students to take chemistry. We teach all levels, ranging from Collaborative/Inclusive Chemistry to Honors and AP Chemistry. All of our classes have students who speak different languages, as well as students with a range of social and physical disabilities, home lives, and socioeconomic statuses. One way we ensure equity in our classroom is by implementing multimodal, phenomenon-based assessments.

Multimodal means students can communicate their understanding using discussion, writing, and/or visual (drawings, symbols, tables, graphs, charts, gestures) representations. Phenomenon-based assessments give students real-world connections to the science ideas and require them to use the science and engineering practices and crosscutting concepts to explain the phenomenon or propose a solution to a problem. Using this method, we can get a real measure of what students actually know.

How Does This Look in the Classroom?

In our Nuclear Chemistry Unit, we use the phenomenon of the Chernobyl disaster: specifically, why food is still contaminated more than 30 years later. One of the ways we assess student understanding early in the unit is with a Stop Motion Video project.

We divide students into groups of four and assign each group one element from the periodic table. The groups must illustrate nuclear processes—including fission, fusion, and alpha and gamma radiation—using stop motion video. Before they begin, we give them a quick introduction to the open source app Stop Motion Studio. The students have fun making a short stop motion video to learn the app’s mechanics.

Then we allow them one class period (90 minutes in our school) to plan and create a storyboard for their video. We lead a whole-class discussion about the criteria for each video, then together create a video checklist. The groups have to decide who will be responsible for each of the four nuclear processes assigned.

We give students examples of materials they can use to create models. They may use physical representations such as beads, beans, or marshmallows; we even had some students punch holes in paper and use the paper dots. Students can also use dry erase markers to write on their desks or markers and poster paper.

Students have complete control over the method they use. They use methods that are built into our classroom culture in which they get peer feedback from group members to ensure they are working toward the task criteria.

Students use the next class period to create their videos. They really have a ton of fun putting their own creative spin on communicating what they’ve learned, in a unique manner that other students can then use to inform people about nuclear radiation. The products they design very clearly tell us to what degree the students understand and are able to model nuclear processes, as well as the parts of atoms, all the while employing familiar technology (smart device).

Here is one student’s example: https://drive.google.com/file/d/16Gohu8tIF_87stFikNy1xXLiSfJe3Hfo/view?usp=sharing.

What we love most about this assessment is the way it gives our students choices in the way they demonstrate what they have learned. The task is scaffolded to allow students to be supported through each phase, whether that is through think-alouds as the teacher is discussing the task itself, or by working with peers in a meaningful way to brainstorm the best method for communicating the science ideas they have learned.

One of the really cool things we’ve experienced since teaching students to use this app is students informing us that they used this same technology for a project in a different class. It’s rewarding to discover that not only are we teaching science and checking for our students’ understanding, but we are also exposing our students to strategies that are meaningful to what they want to accomplish outside of the classroom.

Laura Littrell teaches Chemistry at Boone County High School in Florence, KY.  She has taught Science for 11 years.  She has earned a Bachelor’s Degree in Chemistry at Butler University and a Masters Degree in Science Education at the University of Tennessee.  She serves as Science teacher Ambassador for Boone County Schools working to implement NGSS across the district as well as improve Assessments to make them 3 dimensional. Littrell loves phenomenon driven instruction and continues to change her course so that students can connect Chemistry concepts to everyday phenomena.

 

Kevin Williams is a high school chemistry and engineering teacher in Florence, Kentucky. This is his 6th year teaching at Boone County High School. Williams holds a bachelor’s degree in biology and a master’s degree in education both from Northern Kentucky University. He is passionate about engaging students in three dimensional science lessons and making learning exciting.

 

Note: This article is featured in the January 2020 issue of Next Gen Navigator, a monthly e-newsletter from NSTA delivering information, insights, resources, and professional learning opportunities for science educators by science educators on the Next Generation Science Standards and three-dimensional instruction.  Click here to sign up to receive the Navigator every month.


The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Our school requires all students to take chemistry. We teach all levels, ranging from Collaborative/Inclusive Chemistry to Honors and AP Chemistry. All of our classes have students who speak different languages, as well as students with a range of social and physical disabilities, home lives, and socioeconomic statuses. One way we ensure equity in our classroom is by implementing multimodal, phenomenon-based assessments.

 

Next Gen Navigator

NGSS: Planning for Science Success for All Students

By Hallie Booth

Posted on 2020-01-29

Creating an Environment for All Students to Show Their Understanding

Much discussion has focused on how the NGSS (and other state standards based on the Framework and NGSS) make science accessible to all students. I believe all students can be successful when lessons are designed to use the three dimensions to make sense of phenomena.

What Does an NGSS Classroom Look Like?

The NGSS classroom looks very different from the traditional classroom. Unlike past standards, the NGSS require students to develop ownership of the big ideas in science, not just memorize broad definitions with examples. Students are driving their own learning through the unit and creating artifacts demonstrating their in-depth understanding of the science ideas along the way. All of my units begin in the same way to ensure all of my students have equal-access sensemaking. I offer this glimpse into the thinking and intention of how I start each unit to ensure from the beginning that I am focused on how I can support and engage all students in my classroom:

  • I create a storyboard—also referred to as a storyline—that establishes a learning progression for the unit. I consider the questions my unit-level phenomenon will elicit and design lessons that create opportunities for students to answer them.
  • The unit begins with students experiencing the unit-level phenomenon. This might happen through pictures, data charts, and/or short videos. We create a class record of our observations.
  • The students write their initial questions about the phenomenon that are formulated through a technique called Questioning Formulating Techniques (QFTs).

The questions students ask (and new questions that arise) drive the unit. We decide which question (or questions) we will try to answer, which leads us to the next lesson, and then the next question.

Intentionally Supporting Students

I find that all my students learn from one another through engaging with the science and engineering practices and having opportunities to demonstrate their understanding of the science ideas. As I analyze my class data, individual student demographics aren’t apparent: The data shows students who exceeded the “basic level” of the performance expectations, those who mastered them, and those (less than 10%) who need additional opportunities to engage in the practices to make sense of the targeted science ideas. I find student success is directly linked to the numerous opportunities they are given, opportunities that meet them at their current level of understanding and gradually bring them to an increase in rigor. This also allows students who have a greater understanding of the science ideas to begin higher and create related extensions. The students know where to begin by evaluating the self-guided proficiency chart.

Remediation is based on what my formative assessments tell me the students are struggling with most. In these mini-sessions, I ask specific questions about their artifacts or work on short, guided-learning tasks with them. After the mini-sessions, students tend to clarify any misunderstanding and indicate areas that need to be clarified. I will hold these additional sessions right before the summative assessment to answer any last-minute questions. 

Teaching NGSS holds teachers more accountable for developing coherent storylines built around relevant phenomena and integrating the science and engineering practices and crosscutting concepts into each lesson or activity to support students while they are building their science knowledge. Through this process, I have been able to develop opportunities to individualize the learning experience and ascertain the level of mastery for each of my students. Since I started this, I have had tremendous feedback from several students in all demographics: 

  • “Now I really have to think and process the information.” 
  • “I do not have to just tell you definitions; I have to connect them to the given task.”
  • “I like doing science like this because it really helps me understand what they are asking me.” 
  • “I feel like I can discuss the information in class, and [if I don’t understand something,] I feel like I [can] ask questions about it and not be [labeled as] ‘different’ because a lot of students ask questions in the discussion.”

As teachers, we want all students to be successful, so it is up to us to create a classroom environment that allows this to happen. It is up to us to design units/lessons that make it clear what students are trying to figure out, that are relevant and engaging to students, and that are scaffolded in a manner that helps every kid feel supported. When we have students who are not successful, we have to look inward and ask what we can do differently to enable their success.

Students’ resources

Hallie Booth has spent 25 years in education, serving as an instructional specialist, assistant principal, principal, and the Kentucky Department of Education Regional Science Lead. She currently teaches eighth-grade science at Ballyshannon Middle School in Boone County, Kentucky. Booth holds a Bachelor of Arts (BA) degree in Criminal Justice Law Enforcement, a BA in Elementary Education, a masters in special education, an endorsement in K–9 science education, and a Rank 1 in leadership. She has served as a Common Core fellow, an Education Nation panelist, a Literacy Design Collaborative trainer, an education consultant for the Southern Regional Education Board, and a Thurgood Marshall Foundation trainer. Contact her via Twitter: @alwaysreach1.

Note: This article is featured in the January 2020 issue of Next Gen Navigator, a monthly e-newsletter from NSTA delivering information, insights, resources, and professional learning opportunities for science educators by science educators on the Next Generation Science Standards and three-dimensional instruction.  Click here to sign up to receive the Navigator every month.


The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Creating an Environment for All Students to Show Their Understanding

Much discussion has focused on how the NGSS (and other state standards based on the Framework and NGSS) make science accessible to all students. I believe all students can be successful when lessons are designed to use the three dimensions to make sense of phenomena.

What Does an NGSS Classroom Look Like?

 

Using Senses in Nature to Experience Equity

By Julia Deevers-Rich

Posted on 2020-01-29

In one of my favorite lessons, I take my kindergarten students outside to explore the schoolyard. Though I take my students outdoors throughout the year, I do this lesson at the beginning of the year because it’s an opportunity to teach students to make observations and ask questions. I love seeing my students’ excitement grow as they move around the schoolyard, noticing and wondering about everything! I also get a chance to learn about my students and the wealth of ideas and experiences with nature they bring with them to school.

In this lesson, students begin to develop elements of the Science and Engineering practice of Analyzing and Interpreting Data: Record information (observations, thoughts, and ideas) and Use and share pictures, drawings, and/or writings of observations. We talk about our five senses and how to use them to make observations. I also want to develop the Asking Questions element: Ask questions based on observations to find more information about the natural and/or designed worlds.

Students walk around the school grounds looking for something in nature they would like to observe closely. I like to have everyone walk in silence or very quietly so they can hear the sounds in nature. They might see a bird or butterfly nearby, or find one of the courtyard box turtles eating some tomatoes from our class vegetable garden spot. Many different flowers and plants surround the area, too. When students find that one thing they want to study further, they draw what they see and record in words, pictures, and symbols what they’ve observed with their other senses. They can also measure the object using grade-appropriate tools. 

I ask the students to think about questions they could ask about the object. Then students share with a partner or small group the observations they made and the things they are wondering about the object. Their partner or group members can then ask additional questions and share their own observations. 

Every student has access to this type of learning to help them succeed, and each is bringing different experiences to share with others while experiencing all kinds of new things in nature.

 

In one of my favorite lessons, I take my kindergarten students outside to explore the schoolyard. Though I take my students outdoors throughout the year, I do this lesson at the beginning of the year because it’s an opportunity to teach students to make observations and ask questions. I love seeing my students’ excitement grow as they move around the schoolyard, noticing and wondering about everything! I also get a chance to learn about my students and the wealth of ideas and experiences with nature they bring with them to school.

Subscribe to
Asset 2