feature
Science classroom assessments that work for emergent bilingual learners
The Science Teacher—July/August 2020 (Volume 87, Issue 9)
By Caitlin Gailey McClearyCale Fine and Erin Marie Furtak
American classrooms are increasingly heterogeneous linguistically. If all students are to engage in three-dimensional learning, how are we making classessments accessible and meaningful for emergent bilingual learners? There are few classroom assessment exemplars that embody the NGSS three-dimensional vision of the Framework and fewer that do so with emergent bilinguals in mind. This article describes a literature-based checklist to guide the design of equitable everyday assessment tasks for emergent bilingual learners.
Classroom assessment includes all the activities—both formal and informal—that enable student thinking to inform instruction (Brookhart 2003). This includes both formal, pre-planned assessment tasks that teachers use as formative assessments embedded in units of instruction, as well as informal questions that teachers use to draw out student thinking during classroom activities. In addition, classroom assessment can include summative assessments that science teachers use to determine what students have learned at the conclusion of an instructional sequences.
We use the term emergent bilinguals when we talk about students often referred to as English Learners (ELs) or English Language Learners (ELLs). This reframing emphasizes the linguistic resources students bring to their learning environment (bilingualism) rather than their perceived deficits (low English language proficiency) (Garcia and Kleifgen 2010). Focusing on their assets signals that bilingual learners are more than two monolinguals in one body; their bilingualism can be understood holistically as a unified set of resources developed according to their unique contexts (Grosjean 1989).
Emergent bilinguals, who make up approximately 10% of students in United States K–12 public schools, are a heterogeneous group. While approximately 75% speak Spanish, as a whole they speak over 400 different languages and dialects. Most emergent bilinguals are elementary-school aged and were born in the U.S., but there has been a recent increase in the number of foreign-born students. Most emergent bilinguals are the children of refugee and immigrant parents or identify as U.S. Latinos, Native Americans and Alaskan Natives. Approximately one-quarter of emergent bilinguals are considered “long-term English learners,” meaning they have been classified as ELs for more than seven consecutive years.
We developed the Science Assessment for Emergent Bilingual Learners (SAEBL) checklist (see Figure 1) to help teachers and assessment designers create tasks that demonstrate what emergent bilingual students know and are able to do as they engage in three-dimensional learning experiences.
The checklist elements are based on our review of theoretical, empirical, and practitioner-focused work related to assessment of emergent bilinguals in science (Fine and Furtak 2020). The checklist has five categories: culture and language, task components, alignment and rigor, clear objectives and scoring criteria, and integration of scaffolds. We developed these categories in partnership with K-12 science teachers, district science curriculum coordinators, and state-level science leaders. We describe each category in the following sections.
Three-dimensional assessments should create opportunities that encourage learners to draw on their cultural and linguistic resources (NRC 2012). This includes assessment phenomena that are relevant to learners’ daily lives and experiences (NASEM 2018). Given that classroom assessment practices tend to reflect and reproduce the ways in which white middle-class assessment developers understand science, education, and classroom assessment (Huges 2010), it is particularly important for task designers to represent and legitimize multiple ways of knowing and doing science.
Expanding notions of culture. We understand culture as dynamic and situated in practices and histories of communities rather than static and fixed (Gutierrez and Rogoff 2003). Promising design principles in this field include the use of locally-contextualized phenomena with global implications so learners can engage with tasks through recognizable conditions (NASEM 2018; Buxton 2010) and partnerships with local Indigenous community members to support school science to build on cultural values and knowledge Indigenous learners bring to the classroom (Bang et al. 2010).
Classroom assessments can be designed from a culturally sustaining perspective by focusing on learner and community agency and input (Paris and Alim 2017). This might be accomplished with design teams that reflect the cultural and linguistic diversity of learners and through heterogeneous focus groups to gauge ideas for task phenomena and receive feedback on tasks under development. Tasks can, further, outline ways in which educators tailor datasets to their geographic location. For example, tasks focused on understanding weather patterns can include guidance to educators about where to find locally relevant weather data. Tasks can also take into account learners’ varied problem-solving strategies, including those not commonly taught in U.S. schools, and reflect how concepts are talked about at home or in their local communities (Solano-Flores and Nelson-Barber 2001).
Expanding notions of language. Globalization and increasing language contact have encouraged us to view language practices as fluid and responsive (Garcia and Wei 2014). The term translanguaging represents a new understanding of learners’ language practices, where emergent bilingual speakers are understood to have a complete, unified language system and flexibly use linguistic resources depending on the context (Garcia 2011).
Assessment tasks that constrain emergent bilinguals to English potentially deny students the ability to demonstrate all they know and can do in science. Translanguaging in assessment might involve students discussing their ideas with peers in any language, then writing or sharing out with the whole group in English. Students might preview a task in English with the supportive use of technology (e.g. tablets, smartphones, or computers) but collaborate in completing the task in any language (Garcia, Johnson, and Seltzer 2017). Additionally, task instructions may be presented in the language of instruction as well as the multiple languages represented in the classroom.
Assessment tasks need to contain multiple components to adequately cover the three dimensions of science learning (NRC 2014). The uneven process of language acquisition supports the need for assessment designers to develop tasks with multiple components (Solano-Flores 2006). For example, learners’ knowledge about how to break apart words into component parts (i.e., prefixes and suffixes) or knowledge about the social context of meaning (i.e., idioms and jargon) might make the language of some task components easier to access than others (Solano-Flores and Soltero-Gonzalez 2011).
Additionally, complex, three-dimensional tasks should incorporate open-ended components, encourage the creation and/or use of diagrams, graphs and models with written explanations as evidence, and allow multiple entry points with questions that do not exclusively build off each other (Alvarez et al. 2014).
Teachers often assume that emergent bilinguals are not capable of engaging in the same rigorous science learning as their English-speaking peers (Garcia and Guerra 2004). This sometimes results in teachers watering down the curriculum and limiting opportunities for emergent bilinguals to engage in critical thinking and inquiry-based science investigations (Lewis, Baker, and Helding 2015).
However, these assumptions conflate the ability to think complex thoughts about science with English language proficiency. Classroom activities and assessments designed for all learners, including emergent bilinguals, should be aligned with rigorous three-dimensional grade-level expectations and use relevant discipline-specific science vocabulary (Lee, Quinn, and Valdés 2013). Additionally, assessment tasks should contain multiple opportunities to engage in cognitively challenging task components, requiring learners to propose and justify solutions or explain their thinking.
It is important to support learners’ metacognition by making learning goals and grading criteria explicit at multiple points throughout the assessment process (Coffey et al. 2011). Classroom assessment tasks designed for emergent bilinguals need to account for the fact that every content-based assessment is also a language assessment. This is good news, as language is best assessed in an integrated, natural, and authentic environment (Mahoney 2017).
However, this also challenges task designers to include clear, well-articulated, and isolated language assessment purposes. Once content- and language-specific task objectives have been determined, we can create rubrics and checklists aligned with identified objectives to guide learners (Gottlieb 2016). If allowing space for translanguaging, objectives and scoring criteria might differentiate between general linguistic and language-specific criteria (Garcia, Johnson, and Seltzer 2017).
The Framework’s assessment guidelines call for temporary scaffolds to support learners’ engagement with three-dimensional performance expectations (NRC 2014). Research on assessment design for emergent bilinguals similarly calls for tasks to be designed to include linguistic scaffolds and modifications (e.g. Abedi 2010). Examples include reducing the complexity of linguistic structures and syntax in descriptions embedded in task item stems and prompts, replacing passive voice phrases with actors identified by proper nouns, including sentence frames, and using common terms instead of complex non-focal vocabulary (Abedi 2006).
Table 1. Sample task content and language objectives. | ||||||
---|---|---|---|---|---|---|
|
Non-linguistic scaffolds that support the learning of all students include embedding tasks in contextualized phenomena, the use of bullet points to break apart ideas, the use of bold type for emphasis, the division of prompts into smaller units, and the addition of graphic organizers, rubrics, and checklists to make task expectations clear (Kang et al. 2014; Siegel 2007). In addition, multiple studies support the integration of graphics that present science phenomena in familiar contexts and opportunities for learners to create and explain their own visual representations (Noble et al. 2016; Turkan and Liu 2012).
To illustrate how the checklist can transform a classroom assessment task, we provide an example in Figure 2. The revised task illustrates how small changes make it more accessible not only for emergent bilinguals, but for all students. Providing instructions in two languages encourages students to use all their linguistic resources. Situating the task within a real-world example can help students better share what they know and relate it to their experiences. In addition, integrating checklists for models and explanations, as well as graphic organizers, and reducing the complexity of language in the task help students better understand expectations for their responses.
We developed the SAEBL checklist as a tool for educators and assessment designers so that considerations supporting emergent bilinguals are part of task designs from the start. In this way, we expand the ways in which emergent bilinguals’ can communicate what they know and can do in science. Some of the elements, such as sentence starters or translanguaging, may seem more appropriate for emergent bilinguals at the beginning stages of English language proficiency. However, there is no indication that including scaffolds or explicitly linking tasks to learners’ linguistic and cultural resources negatively affects outcomes of English-speaking students of European descent (Kang et al. 2014; Siegel 2007). In this way, we can enact a more expansive vision of Framework-based equitable classroom assessment tasks that broadens opportunities for participation.
As we conclude, we acknowledge that this checklist is likely not enough, on its own, to shift classroom practice. Teachers’ language ideologies—the ways our ideas about language reflect and are informed by our ideas about people and society—matter (Flores and Rosa 2015). There is emerging evidence that they may influence the design, enactment, and interpretation of science classroom assessment tasks (Fine, Strong, and Palmer 2019; Lemmi et al. 2019). However, this checklist aims to support shifts in classroom assessment design and pedagogy in transformative ways that lead to shifts in teachers’ ideological stances.
ACKNOWLEDGMENT
This material is based upon work supported by the National Science Foundation under Grant No. 1505527 and 1561751. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. We are grateful for the support and feedback of the Michigan Mathematics and Science Leadership Network in the development of the SAEBR checklist.
Caitlin G. McC. Fine (caitlin.fine@colorado.edu) is a doctoral candidate at University of Colorado Boulder–School of Education, Department of Equity, Bilingualism and Biliteracy in Boulder, Colorado. Erin M. Furtak (erin.furtak@colorado.edu) is a professor at University of Colorado Boulder–School of Education, Department of STEM Education in Boulder, Colorado.
Equity Inclusion Multicultural High School