High School | Daily Do
Biology Crosscutting Concepts Disciplinary Core Ideas Is Lesson Plan Life Science NGSS Phenomena Science and Engineering Practices Three-Dimensional Learning High School Grades 9-12
Teachers and families across the country are facing a new reality of providing opportunities for students to do science through distance and home learning. The Daily Do is one of the ways NSTA is supporting teachers and families with this endeavor. Each weekday, NSTA will share a sensemaking task teachers and families can use to engage their students in authentic, relevant science learning. We encourage families to make time for family science learning (science is a social process!) and are dedicated to helping students and their families find balance between learning science and the day-to-day responsibilities they have to stay healthy and safe.
Interested in learning about other ways NSTA is supporting teachers and families? Visit the NSTA homepage.
Sensemaking is actively trying to figure out how the world works (science) or how to design solutions to problems (engineering). Students do science and engineering through the science and engineering practices. Engaging in these practices necessitates that students be part of a learning community to be able to share ideas, evaluate competing ideas, give and receive critique, and reach consensus. Whether this community of learners is made up of classmates or family members, students and adults build and refine science and engineering knowledge together.
Cancer is a topic that is often covered in high school biology class when teaching about cells. Often it is used at the end of a unit as an example of what happens when cells do not divide properly, or divide uncontrollably without regulatory mechanisms. As many, if not all, students are familiar with cancer in some way, it is often a topic that is disused at a surface level of understanding. However, when used as a phenomenon, it can enable students to use cancer as a vehicle for understanding. For today's Daily Do, we use the table (pictured above) to prompt students to think about cancer differently than they have in the past.
Many traditional class discussions focus on cause, treatment, and prevention of cancer. Today, we examine cancer from a new perspective: why some animals rarely develop cancer. Although several species of animals have a very low incidence of cancer, today students will figure out Why is cancer so rare in elephants? What is happening with the elephants? Let's investigate!
Guidance. The goal is to get students thinking about why elephants and humans have such different rates of incidence of cancer. Presenting a phenomenon and asking students to generate questions about it creates a need to figure out the answer to those questions. This is authentic engagement and a powerful learning process (unlike "learning about" cancer as an example of what happens when cell division goes wrong).
Presenting the Phenomenon
Have students observe the table on slide 2 and write down what they notice about the data presented. This step is critical in eliciting further questions about why some organisms seem more susceptible to developing cancer and other organisms are not. Our goal is to promote student thinking about questions they have related to this. All student questions are acceptable at this point. We want to motivate curiosity and not distinguish between "good questions" and "bad questions" or "right questions" and "wrong questions." Common questions will arise for most students, which is what this task builds upon.
Investigative questions are common questions kids may ask after they are introduced to the phenomenon. Although questions may vary, many students are curious about what causes cancer and why it presents in so many different ways.
Guidance. It is important to allow time for thinking. Many students have ideas and questions, but need time to formulate their idea or question into words. Some students may also benefit from writing their thoughts first before they share. As adults, we may be tempted to give them questions we feel might be important to explore; however, we need to refrain from this and allow our students to practice asking their own questions. Our goal here is for students to consider all of the data they are seeing in the graph and to develop questions around this data.
Common Questions (slide 3)
We want to focus on one question in particular at this point. (slide 4)
Connection Guidance. Students may make connections to previous concepts in other grade levels. For example, students may mention that when cells divide incorrectly, they can cause a tumor. They may also bring up ideas of how to "kill" cancerous cells through a variety of different treatment options. We know that many students have been affected by cancer and want to ensure we are sensitive to their past experiences. It will be important for us to acknowledge and validate what each student brings to the discussion, but also move the discussion forward.
Narrowing the Scope
Tell students, "Now that we have identified the first question we want to figure out, it would be helpful to gain some additional background information about what you know about cancer and genes." Create a table like the one on slide 5 to elicit prior knowledge. In addition, document any new questions and ideas for what we need to figure out next.
Discuss the ideas that surfaced from creating the table. "We think there is a link between the TP53 gene and the risk of cancer, but we are not sure. From the data, we can see that elephants, dogs, and humans all have the gene, but all present different rates of risk. We are not sure if elephants have more just because they are bigger, but also notice that dogs and humans have the same amount. We need to find out more about elephants and this gene."
It is valuable for learners to stop periodically and gain consensus about what they currently understand to be true. Teachers do this often in the classroom, periodically pausing instruction to be sure students have achieved the learning milestones necessary to move forward.
"Let's look back at what we've figured out up to this point."
After gathering information from the video, students will have figured out the following (slide 9):
Next, we revisit the questions we had after the first reading and decide what question(s) need to be figured out next. (Slide 10)
We engage in a discussion and decide we need to figure out if other animals present at low risk or if elephants the only ones. If other animals are at low risk of developing cancer, are they also being studied? We feel that these new questions warrant investigation, so we engage in additional research.
We did some investigation through readings and discussion and discovered that
So, let's return to our original questions:
Do we have enough information to create an argument from evidence for this question? What data have we gathered that we could use for evidence in defending a claim that either supports or refutes the idea that having more copies of the p53 gene gives an organism a lower risk of developing cancer?
Teacher Guidance. At this point, students may want to engage in more research, or you could have them do a claim, evidence, reasoning (CER) activity. Traditionally, the CER activity is presented as a written task; however, there are several ways for students to engage in a CER that allows for differentiation. Consider offering students a choice, including oral arguments, presentations, and informational posters, or creating a public service announcement. For more information on other uses of the CER, see STEM Teaching Tool #17.
To answer our phenomenon question—Why is cancer so rare in elephants?—we need to look back at all of the evidence we have gathered through our research. (slide 15)
Looking back, it didn't make sense that an animal that is so big and has so many cells developed cancer at such a low rate. We figured out the following:
"Based on what we have figured out and our current understanding about elephants and cancer, can we answer our phenomenon question?" Here students have the opportunity to develop an explanation based on all of the connections they have made among cancer, genes, and elephants.
Connection Guidance. Almost everyone has been impacted by cancer in some way by the time they reach high school. As this can be a stressful topic for some students, be cautious about asking students to make personal connections about this topic.
NSTA has created a Why is cancer so rare in elephants? resource collection to support teachers and families using this task. If you're an NSTA member, you can add this collection to your library by clicking Add to My Library, located near the top of the page (at right in the blue box).
This Daily Do is inspired by and uses materials from the The Disease storyline developed by the Illinois Science Teaching Association-supported NGSS Biology Storyline Working Group and HHMI Biointeractive. These are an open-source resources that can be used by parents and teachers to implement student driven learning and can be found on the Illinois Science Teaching Association (ISTA) website.