Middle School | Daily Do
Disciplinary Core Ideas Is Lesson Plan NGSS Phenomena Physical Science Science and Engineering Practices Three-Dimensional Learning Middle School Grades 6-8 Grades 9-12
In today's task, Why does the can come back?, students experience the phenomenon of the comeback can - a can that when sent rolling along a level, horizontal surface, eventually changes direction and rolls back to the sender. Using the practice of developing and using models and the thinking tools of patterns and cause and effect, students begin to develop an understanding of the relationship between forces and energy.
This task requires at least one "comeback can" constructed ahead of time (see directions and tips below). If you are in a face-to-face setting, consider building at least one comeback can per each group of four students. Students should NOT be part of the construction process.
.Materials (per comeback can)
Directions
*You can substitute a fishing sinker or washers for the hex nut. Make sure whatever you're using for as the weight does not touch the side of the can when suspended on the rubber band.
Watch the Come Back Can - Kids Craft Toy video to support the directions above. If you don't have a hex nut available, watch the Rollback Can Experiment video to find out how to use a 9-volt battery instead.
Give your comeback can a little push. Does it roll back to you? If the answer is yes, you're ready to begin!
Tell students you have a puzzling phenomenon to share. Ask them to first create an I See - I Think - I Wonder table to record observations, ideas and questions.
Place the comeback can on the floor or long desk and roll it away from you. Each time the can returns, push it away from you using the same amount of force each time. Don't let the can continue to roll back and forth on it's own at this time.
Ask students to turn to a partner and share their observations. As you move around the room, listen for students to share ideas about forces and energy. Bring students back together and ask them to share an observation or their partner's observation with the class. Create a class list of observations; make sure the list is easily accessible by all students. If students share questions, ask them to make sure to record that question in the I Wonder column of their table.
Share with students, "I hear many of you sharing ideas about forces and energy. Do you think we can use ideas about forces and energy to explain why the can comes back?"
Assign students partners. Then assign each pair of students one of the following tasks:
Make sure the same number of student pairs are working on each task.
As you move around the room, you might ask the students working on the forces models:
You might ask students who are working on the energy models:
Next, create small groups of four students by combining a pair of "force" students with a pair of "energy" students. Ask the groups to work together to create a consensus model that uses both force and energy ideas to explain why the can rolls away and then back to you.
Roll the comeback can across the floor or table using the same amount of force as you did before. Say to the students, "Without making changes to the comeback can itself, what variables could we change?" Ask students to independently think about the variables and then record their ideas. Then, ask students to share their ideas with their small group.
Bring the students back together and ask them to share variables their group identified. Students might share these variables:
Say to students, "Let's test how well our models can predict how changing a variable will effect the way the comeback can rolls." Ask students to identify three variables they want to change and tell how each change will affect the comeback can's motion based on their model (use the model as the basis for evidence). Give students independent thinking time to complete this task; consider asking students to use the If-then-because sentence stem (scaffold) for each prediction.
Ask students to return to their small groups and share their predictions. Then ask groups to choose three predictions to test. They can change the same variable in three different ways or choose three different variable to change. Create a space for groups to post their predictions.
If you have multiple comeback cans, provide each group with a can to test their predictions. If you only have one comeback can, categorize the groups' predictions (or ask students to categorize the predictions) and then test each set of predictions. Ask students to make and record observations and note any new questions that arise in their I See-I Think-I Wonder table (and answer questions they now can).
Ask student groups to share their predictions and the outcome of the tests (related to their predictions) with the class. You might have them post the test results next to their predictions. Next, ask student groups to look for patterns in the class data. Bring the class back together and ask groups to share patterns they observed. Create a class record of the patterns the groups identify.
Give student groups time to add to and/or change their group consensus models based on the data collected during testing and the patterns identified by the class. Then, ask groups to post their models around the room or in a shared virtual space. Instruct groups to visit at least two other group models and at each one observe and record:
Allow students time to return to their group consensus models and make revisions. As you walk around the room, ask student groups why they are adding to/changing their models. You might ask, "How does this addition/change help to explain why _____ caused the comeback can to _____?"
Bring students back together. Create a list labeled, "Must-Haves" and ask students to share what they think must be included on a model that explains why the can rolls away and then comes back to you. Students will likely include:
Consider writing each "must-have" on a paper strip or digital sticky note. Task students to work with a partner or small group to connect statements about forces to statements about energy. For example, students might connect "a force that starts the can rolling" with "motion energy transferred from arm/hand to can". Ask groups to share the connections, and physically move the statements on the class "must-have" list to reflect the connections. If the same statement is needed for more than one connection, write the statement a second time and make the connection. You might ask students if there is pattern in the connections they have made between forces and energy. Students might say statements about forces connect to statements about the energy transfers.
Reveal the inside of the comeback can. Ask students to revisit the questions recorded in the I Wonder column of their table. Which questions can they now answer? What new questions do they have?