Skip to main content
 

New NSTA Infographic on NGSS Now Available for Download

By Cindy Workosky

Posted on 2016-03-07

ngss_infographic(1)-page-0

Did you know that from 2014 to 2024 employment in STEM subjects (science, technology, engineering, and mathematics) is expected to grow faster than overall employment? In fact, STEM jobs now comprise 20% of all U.S jobs. But, are students ready for the STEM world? In 2014, only about a third of high school students who took the ACT test were ready for college-level science.

These statistics, and more, can be found in the first of a series of visual and informative infographics from NSTA on the Next Generation Science Standards (NGSS). Find it now on the NGSS@NSTA Hub.  NSTA is launching the series as a way to support teachers, schools and district leaders, parents, business leaders, and other stakeholders, as they transition to a new way of teaching and learning science. Seventeen states, the District of Columbia, and numerous districts around the country have already adopted the NGSS and are making steady progress on building awareness of the standards, helping teachers understand the changes needed in classroom instruction, identifying and developing classroom materials, mapping out curricula, and more. NSTA’s position statement on the NGSS outlines our recommendations for full implementation.

Central to this important transition is a constant reminder of the need for and reasons why science educators choose this path, which is why we focused our first infographic on the topic, “Why It’s Time for NEW Science Education Standards.”

Here are some reasons. 

Science education needs to keep pace with the changing world around us. We’ve made major advances in science and technology—consider the discoveries in space science resulting with the demotion of Pluto to a dwarf planet, or the advances we’ve made in mapping the human genome. Science is constantly changing and science teaching needs to keep pace.

We also know more about how students learn. Rather than focusing on memorization of lots of unrelated facts, research shows that engaging in the practices used by scientists and engineers plays a key role in student comprehension. The NGSS emphasizes a smaller number of core ideas that students can build on from grade to grade. The more manageable scope allows teachers to weave in practices and concepts common to all scientific disciplines — which better reflects the way students learn.

Our nation’s workforce needs people with STEM skills. Today’s modern workforce depends on individuals with scientific and technological skills. Study after study points to the changing workforce where skills and expertise in the STEM fields are essential, and also more profitable. Did you know that a person with a STEM major earns on average almost $300,000 more than non-STEM majors over their lifetime? And the employment outlook for STEM jobs well into the future is strong.

Science knowledge has an impact on the daily lives of all Americans. From health care to environmental stewardship, a countless number of personal and societal issues require citizens to make informed decisions based on their understanding of science and technology. Consider the current health crisis to contain and find a vaccine for the Zika virus disease. Most would agree that for our democratic society to continue—and for our economy to thrive—our citizens must be educated and scientifically literate. Even the majority of students who will not be scientists need to be informed consumers of the science that is changing daily.

Students are not prepared for the future. Only 37% of high school students who took the ACT test were ready for college-level science. In addition, www.nextgenscience.org lists the following statistics that all point to the need for strengthening science teaching and learning.

  • The 2012 Program for International Student Assessment (PISA) ranks the United States as 23rd in Science, 30th in Math, and 20th in Reading Literacy out of 65 OECD education systems.
  • In 2011, the United States ranked 23rd in high school graduation rate among OECD countries.
  • Over a third of eighth-graders scored below basic on the 2011 NAEP Science assessment.
  • In 2012, 54% of high school graduates did not meet the ACT’s college readiness benchmark levels in math, and 69% of graduates failed to meet the readiness benchmark levels in science.

Download NSTA’s infographic today and share it with your colleagues, principals, parents, and others. Stay posted for more infographics in the coming months that will focus on the architecture of the NGSS, support needed for implementation, and what parents can do to support their child’s learning at home.

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Future NSTA Conferences

2016 National Conference

2016 STEM Forum & Expo

2016 Area Conferences

Follow NSTA

 

 

ngss_infographic(1)-page-0

 

Teaching Students About Marine Technology

By Debra Shapiro

Posted on 2016-03-07

 

Middle school students launch a Remotely Operated Vehicle at a Marine Advanced Technology Education (MATE) competition. Photo credit: MATE CENTER

Middle school students launch a Remotely Operated Vehicle at a Marine Advanced
Technology Education (MATE) competition. Photo credit: MATE CENTER

“We use marine technology as a hook to teach engineering and technology,” says Deidre Sullivan, director and principal investigator of the Marine Advanced Technology Education (MATE) Center in Monterey, California. “There is a need for engineers, and especially technicians with applied engineering skills. There are a lot of these jobs in the marine field, but also in advanced manufacturing, renew[able] energy, and in many other sectors of the economy. We focus on getting students into the workforce by expanding the pipeline for [them] to enter science, technology, engineering, and math programs.”

Funded by the National Science Foundation (NSF), the MATE Center works with secondary schools, community colleges, universities, research institutions, marine industries, professional societies, and working professionals to develop curricula and courses in marine technology, underwater robotics, marine geospatial technology, career awareness, and ocean observing systems. MATE provides professional development (PD) for faculty; conducts underwater robotics competitions for students; and offers internships for college students.

For MATE competitions, “we start with building simple underwater robots (Remotely Operated Vehicles, ROVs) to help students understand electronics and how to apply math to solve real-world problems,” Sullivan relates. Students learn about “electronics, mechanics, hydraulics, and computer controls,…which are important to robotics and automation,” she explains. “With many high-tech occupations, we see a convergence of these skills, and with this knowledge, students can go into many different fields.”

MATE and the Marine Technology Society, a nonprofit professional organization, hold international ROV competitions for students in grades 4–16. The competitions have a “strong entrepreneurial component,” says Sullivan. Students form a company and serve as chief executive officer, chief financial officer, engineering lead, marketing lead, and in other positions, and solve real-world problems. “They learn how to follow timelines, budgets, and specifications. They produce technical documentation and marketing displays and give oral presentations to professionals. They learn how to communicate their knowledge of robotics and how to work together as a team,” she relates.

Learn more and access free curricula at www.marinetech.org.

Building SeaPerch ROVs

By building an underwater ROV through the SeaPerch program, teachers and students from sixth grade through college can learn about naval architecture and ocean engineering. Funded by the U.S. Navy’s Office of Naval Research and managed by the Association of Unmanned Vehicle Systems International Foundation, SeaPerch is “a national outreach program with a kit, an expanded curriculum, a website, and local and national challenge competitions,” says Susan Nelson, Sea Perch’s founder and executive director. The program has grown from “750 students in two school districts in 2007 to 300,000 students [nationwide], and has expanded into nine countries as of 2015,” she reports.

Teacher PD is offered at sites around the country or online (learn more at www.seaperch.org). “SeaPerch is very flexible and maps well to many learning outcomes,” Nelson notes, and can be used in after-school robotics clubs or taught in school. Building the ROV takes “an average of nine to 40 hours of class time,” she reports.

Participation in SeaPerch competitions isn’t mandatory; “we suggest that you just need to put the ROV in the water to test it,” she maintains.

In surveys, says Nelson, 90% of students said SeaPerch “increased my confidence in my ability to participate in engineering projects or activities,” 74% said it “made me decide to take different classes in school than I had planned to,” and 83% said SeaPerch “made me decide to work harder in school.”

A Year-Long Fellowship

Based at University of Rhode Island’s (URI) Inner Space Center and University of Connecticut’s Avery Point campus, the Marine Technology for Teachers and Students (MaTTS; http://mattsproject.org) Project aims “to encourage high school teachers to connect engineering and technology with marine science,” says Project Manager Andrea Gingras. “We train teachers in how to build and use underwater ROVs, sensors, and hydrophones (microphones that detect sound waves underwater).”

Open to teachers in Rhode Island, Connecticut, and Massachusetts, MaTTS is in its third and final year of NSF funding. “We’re hoping to expand the program nationally,” notes Gingras.

During their year-long MaTTS fellowship, for which they receive a stipend, teachers engage with ocean scientists and engineers in person and virtually; build and deploy the technological instruments; and teach students how to build and deploy them during an intensive five-day summer institute. Students develop a cruise plan for a mock ocean expedition and participate in “scientist speed-dating,” conversing one-on-one with marine scientists and engineers, says Gingras. “We expose students to the many careers associated with marine science, [such as] marine archaeologists, ocean engineers, and physical and geological oceanographers—not just marine biologists. There’s a whole other world to explore.”

Teachers and students share what they’ve learned with colleagues and students in their school and district. “Our goal is to develop teacher-leaders and student-leaders,” Gingras asserts.

“Marine technology is part of the future everywhere. A large portion of our population lives on the coasts,” says Alison Murray, science teacher at Central Falls High School in Central Falls, Rhode Island, a member of the second MaTTS cohort. “The more students know about the ocean, the better.”

MaTTS offered “a great opportunity to work with [scientists] at the forefront of the field,” says Murray. For her inner-city students, “this was huge because they don’t have access to lots of professionals and role models.” Murray has incorporated the sensors in her engineering classes. “I got up to date on the technology and how I could incorporate it in my classes. Working with elite marine scientists provided intellectual satisfaction,” she contends.

“I learned an awful lot from the other teachers…The scientists answer our questions and help arrange field trips to their workplaces or field studies. It’s a phenomenal opportunity,” she concludes.

 

This article originally appeared in the March 2016 issue of NSTA Reports, the member newspaper of the National Science Teachers Association. Each month, NSTA members receive NSTA Reports featuring news on science education, the association, and more. Not a member? Learn how NSTA can help you become the best science teacher you can be.

The mission of NSTA is to promote excellence and innovation i
n science teaching and learning for all.

Follow NSTA

Facebook icon Twitter icon LinkedIn icon Pinterest icon G+ icon YouTube icon Instagram icon

 

 

Mastering Scientific Practices with Technology, Part 2

By sstuckey

Posted on 2016-03-07

In this video, columnist Ben Smith shares information from the Science 2.0 column, “Mastering Scientific Practices With Technology, Part 2,” that appeared in a recent issue of The Science Teacher. Read the article here: http://bit.ly/1QBrwyV

 

In this video, columnist Ben Smith shares information from the Science 2.0 column, “Mastering Scientific Practices With Technology, Part 2,” that appeared in a recent issue of The Science Teacher. Read the article here: http://bit.ly/1QBrwyV

 

Subscribe to
Asset 2