By Joe Krajcik
Posted on 2017-02-22
DCIs Develop Across Time
The first two blogs in my series on disciplinary core ideas (DCIs) focused on how DCIs form a conceptual framework and that DCIs provide explanations for a variety of phenomena. In this final blog I’d like to focus on an important idea reflected in A Framework for K–12 Science Education (Framework) that DCIs are not stand-alone, individual facts that students come to “know” as the result of one lesson or across one grade. Rather, DCIs develop in ways that become progressively more sophisticated as students use those ideas to make sense of new phenomena or problems within and across the grade levels. What is meant by more sophisticated? It means that students’ explanations become deeper and broader allowing them to explain more fully the causes and consequences of a wider array of related phenomena. Sophistication also means that DCIs become integrated with more ideas and experiences. Sophistication is not acquiring more ideas and more details; rather, it is about making connections to ideas and experiences. As ideas get more sophisticated, students come to understand the cause and effect mechanisms that underlie a range of phenomena.
Research from the learning sciences and science education has shown that in order for knowledge to be useful, students need to learn ideas in greater depth and across time. The DCIs are introduced to students in early grades and develop throughout the K–12 years and beyond. As such, core ideas form a strong foundation to promote continual learning throughout one’s life. Building ideas across time supports learners in developing deeper and more meaningful and sophisticated understandings by forming connections among ideas. These connections will allow learners to apply the understandings to new and novel situations.
For most science educators, taking a developmental approach to teaching science is new. As teachers and curriculum designers, we need to carefully link new learning and experiences to what students have previously learned, allowing the ideas to become more sophisticated over time. The idea of building on previous ideas is one of the most solid ideas in learning; unfortunately, in the past we’ve seldom given it the attention it deserves. For example, some textbooks present ideas about the water cycle that are dependent on understanding that matter is made of particles, without providing the help students need to develop this idea. The Framework emphasizes the importance of taking a developmental perspective focused on developing ideas over time and building on students’ prior knowledge and experiences.
A developmental perspective requires us, as teachers and curriculum designers, to build and link to students’ current understanding to form richer and more connected ideas over time (NRC 2007). Disciplinary core ideas should develop from elementary through high school. Each year the ideas become more sophisticated, allowing students to provide more complete explanations of phenomena as well as explain more phenomena.
A developmental perspective guides students’ knowledge toward a more sophisticated and integrated understanding of the scientific idea. For example, if by the end of 5th grade we can help students know and apply the idea that forces acting on an object can cause changes in the object’s speed or direction, we can help learners in later grades develop deeper ideas of forces, including those at the intermolecular level. Similarly, helping 3rd-grade students understand that changes in the environment will cause some organisms to survive and reproduce, others to move to a new location, and others to die off, can lead to deeper understanding of natural selection and evolution in middle school and high school. The grade band endpoints in the Framework show this progression of ideas across time. In Disciplinary Core Ideas: Reshaping Teaching and Learning (Duncan, Krajcik, & Ravit 2016) various chapters on the DCIs discuss how they develop across time. Examples of how teachers can support student learning at various steps is also presented and discussed.
The developmental perspective also stresses that teaching more content, devoid from the use and application of those ideas, does not allow students to explain or reason about phenomena. Students can memorize science principles, but not really understand them. It helps to reflect back on our own experiences. I remember being able to solve the problems in my college physics class, but I didn’t understand the ideas behind what I was doing or how to apply those ideas to the world in which I lived.
It is critical to realize that growth in understanding is not developmentally inevitable, but depends on what we do in our teaching to provide key learning experiences that help students develop the ideas to become more sophisticated. Reaching the various endpoints depends on the instruction the student receives and how understanding is assessed. Disciplinary Core Ideas: Reshaping Teaching and Learning (Duncan, Krajcik & Ravit 2016) presents some ideas to move students from one level to another, but development of coherent curriculum materials that build understanding across time is needed.
Concluding Thoughts
Deep, meaningful understanding of disciplinary core ideas are essential to predict and explain phenomena, but DCIs serve as only one dimension in developing this useable knowledge. Science and engineering practices, disciplinary core ideas, and crosscutting concepts work together to support students in making sense of phenomena or designing solutions. Rather than “learning” numerous disconnected ideas, the Framework focuses on helping learners develop a useable understanding of fewer, powerful ideas that develop across K–12-science curriculum and can form conceptual tools that learners can use to make sense of the world. Classroom instruction and curriculum materials will need to support students in reaching these important ideas. As such, curriculum materials and instruction focus on making sense of phenomena using the DCIs, scientific and engineering practices, and core ideas.
It is also important to realize that DCIs are for all students in our nation. All learners need to develop a sophisticated understanding of DCIs so that they can be used along with science and engineering practices and crosscutting concepts to make sense of the world. Developing useable knowledge will help ensure that we have a sustainable and free world in which to live. If given the chance I might tweak some of the physical science core ideas; but, I am convinced that the full spectrum of DCIs, along with the science and engineering practices, are good guides for our teaching and learning.
I would love to hear from you about the ideas in this blog, your ideas, questions, and feedback. Tweet me at @krajcikjoe or email me krajcik@msu.edu. If you want to learn more about the disciplinary core ideas take a look at our new book, Disciplinary Core Ideas: Reshaping Teaching and Learning, edited by Ravit Duncan, Joe Krajcik, and Ann Rivet, just published by NSTA Press.
References
American Association for the Advancement of Science (1993). Benchmarks for science literacy. New York: Oxford University Press.
Duncan, R., J. Krajcik, and A. Ravit eds. 2016. Disciplinary Core Ideas: Reshaping Teaching and Learning. Arlington, VA: National Science Teachers Association Press.
Fortus, D. and J. Krajcik. 2011. Curriculum Coherence and Learning Progressions in The International Handbook of Research in Science Education (second edition) Fraser, B. J., K. G. Tobin, and C. J. McRobbie, eds. Dordrecht: Springer.
National Research Council (NRC). 2012. A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. Washington DC: National Academies Press.
Stevens, S., L. Sutherland, and J. S. Krajcik. 2009. The Big Ideas of Nanoscale Science and Engineering. Arlington, VA: National Science Teachers Association Press.
_____________________________________________________
Editor’s note: This blog is the last in a series of three by Joe Krajcik that explore the NGSS disciplinary core ideas.
Joe Krajcik (Krajcik@msu.edu) is a professor of science education at Michigan State University and director of the Institute for Collaborative Research for Education, Assessment, and Teaching Environments for Science, Technology and Engineering and Mathematics (CREATE for STEM). He served as Design Team Lead for both the Framework and the NGSS.
The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.
Future NSTA Conferences
STEM Forum & Expo
Follow NSTA
DCIs Develop Across Time
By Mary Bigelow
Posted on 2017-02-19
All three journals this month include the inaugural Best STEM Books for Students K–12 with descriptions and reviews. The rubric and criteria used in selecting these books is also provided. Share it with your librarian, too.
Crowdfunding for Elementary Science Educators in S&C has fund-raising ideas applicable to any grade level.
Science Scope — Water
From the chemistry of water to the biology of water habitats and ecosystem to the relationship of water and weather to the importance of water in the body to current events related to access to clean water, water is indeed an Essential Substance.
Featured articles that describe lessons include a helpful sidebar (“At a Glance”) documenting the big idea, essential pre-knowledge, time, and cost. The lessons also include connections with the NGSS.
For more on the content that provides a context for these projects and strategies see the SciLinks topics Algae, Aquatic Ecosystems, Eclipses, Freshwater Ecosystems, Groundwater, Ocean Water Chemistry, Photosynthesis, Water Cycle, Water Properties, Water Quality, Water Treatment, Watersheds
Continue for The Science Teacher and Science and Children
The Science Teacher — Evolution
The featured articles in this issue focus on evolution as a foundation and unifying theme of biology, helping us to understand the diversity of living things and how they are interconnected. In the Editor’s Corner: This View of Life, the editor shares advice for when a student has religious concerns for learning about evolution.
The lessons described in the articles include connections with the NGSS.
For more on the content that provides a context for these projects and strategies see the SciLinks topics Charles Darwin, Darwin and Natural Selection, Evolution, Evolution of Man, Evolutionary Biology, Extinction, Galapagos Islands, Natural Selection, Vertebrate Evolution, Newton’s Third Law
Science & Children – Early Childhood Earth Science
Young children are full of curiosity and are eager to experiment (“play”) with objects and phenomena. Early intervention is a key to tapping into this curiosity. This issue has many ideas that are appropriate for young (and maybe not-so-young) students.
The lessons described in the articles include connections with the NGSS.
For more on the content that provides a context for these projects and strategies see the SciLinks topics Eclipses, Habitats, Landforms, Moon Phases, Plate Tectonics, Roller Coasters, Solutions to Pollution Problems, Volcanoes, Water Cycle, Watersheds
All three journals this month include the inaugural Best STEM Books for Students K–12 with descriptions and reviews. The rubric and criteria used in selecting these books is also provided. Share it with your librarian, too.
Crowdfunding for Elementary Science Educators in S&C has fund-raising ideas applicable to any grade level.
By Carole Hayward
Posted on 2017-02-18
Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices provides an in-depth understanding of the practices strand of A Framework for K–12 Science Education (Framework) and the Next Generation Science Standards (NGSS).
Noting that the changes to the standards will likely cause some stress, the authors developed this resource to help teachers. “This is an exciting time in science education. We have many opportunities before us to make significant and lasting change in the ways we teach science at the K–12 level. But with major change comes some anxiety. We hope this book can begin to answer some of your questions based on the reforms found in the Framework and the NGSS,” the authors state in the first chapter.
Helping Students Make Sense of the World addresses three major questions:
Written in clear, nontechnical language, this book edited by Christina Schwarz, Cynthia Passmore, and Brian Reiser, explains what is different about practice-centered teaching and learning and how it fits into what teachers have already been doing. “We like to think of the focus on practices as a kind of Inquiry 2.0—not a replacement for inquiry but rather a second wave that articulates more clearly what successful inquiry looks like when it results in building scientific knowledge,” state the editors.
Developed for K–12 science teachers, curriculum developers, teacher educators, and administrators, the book’s lessons are classroom-tested and designed to make implementing the practices as easy as possible.
Check out the sample chapter Developing and Using Models. Helping Students Make Sense of the World is also available as an ebook.
Follow NSTA
Save
Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices provides an in-depth understanding of the practices strand of A Framework for K–12 Science Education (Framework) and the Next Generation Science Standards (NGSS).
By Kate Falk
Posted on 2017-02-17
This week in education news, Idaho legislators remove climate change language from new state science standards, California renews push to promote environmental education in public schools, three global indexes show that America’s public schools are doing something right, and Intel dropped its sponsorship of the International Science and Engineering Fair.
Idaho Legislators Strip Climate Change Language in New Science Standards
Idaho Lawmakers on the state’s House Education Committee voted to approve the new K-12 science standards only when references to human activity as a prime cause of climate change that had appeared in a draft of the standards were removed. Click here to read the article featured in Education Week.
California Renews Push to Promote Environmental Literacy in Schools
Environmental education in California got another big push last November when the State Board of Education approved integrating five key environmental principles into the new science frameworks last November. The frameworks provide a blueprint for introducing the Next Generation Science Standards, which the state adopted in 2013, and are gradually being introduced in schools across the state. Click here to read the article featured on the EdSource website.
Three Global Indexes Show that U.S. Public Schools Must be Doing Something Right
Three global indexes show that U.S. public schools must be doing something right. Test scores aren’t the only measure of achievement. Click here to read the article featured in The Washington Post.
Intel Drops Its Sponsorship of Science Fairs, Prompting an Identity Crisis
Intel ended its support last year for the national Science Talent Search and now will drop its backing of the International Science and Engineering Fair. Intel’s move away from traditional science fairs leads to broader questions about how a top technology company should handle the corporate sponsorship of science, and what is the best way to promote the education of the tech work force of the future. Click here to read the article featured in The New York Times.
Spatial Skills: A Neglected Dimension of Early STEM Education
Mounting empirical evidence suggests that spatial skills actually predict success in STEM fields out to adulthood. Indeed, they may serve as a STEM “gateway.” Despite the evidence, however, the importance of spatial skills is often overlooked as a key feature of STEM education. This frequent neglect of spatial development creates an additional barrier to children’s STEM learning. Click here to read the article featured on Education Week’s Leadership 360 blog.
Stay tuned for next week’s top education news stories.
The Communication, Legislative & Public Affairs (CLPA) team strives to keep NSTA members, teachers, science education leaders, and the general public informed about NSTA programs, products, and services and key science education issues and legislation. In the association’s role as the national voice for science education, its CLPA team actively promotes NSTA’s positions on science education issues and communicates key NSTA messages to essential audiences.
The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.
Follow NSTA
By David Evans, NSTA Executive Director
Posted on 2017-02-16
This Valentine’s Day, while most media attention was focused on the dismissal of the National Security Advisor, The New York Times ran a story that received much less media attention, but has far greater potential impact on our nation’s future.
Amy Harmon reported in the article, Human Gene Editing Receives Science Panel’s Support, about a just-released study by the National Academies of Science, Medicine, and Engineering (Human Genome Editing: Science, Ethics, and Governance. National Academy Press, 2017) that supports continued research and application of genetic modification of human cells, including those cells that pass genetic information to the next generation.
Writes Harmon, “The advisory group endorsed only alterations designed to prevent babies from acquiring genes known to cause ‘serious diseases and disability,’ and only when there is no ‘reasonable alternative.’ The report provides an explicit rationale for genetic research that the federal government has avoided supporting until now, although the work is being pursued in countries like Sweden and China.”
One year ago, scientists stated that the ethical questions associated with the genetic modification of human germ cells could be deferred because the risks associated with the methods were too great to permit even exploratory testing. How quickly the science and the technology have changed!
Most importantly, the report calls for extensive public participation in the discussion of the future use of the technology: RECOMMENDATION 7-1. Extensive and inclusive public participation should precede clinical trials for any extension of human genome editing beyond treatment or prevention of disease or disability.
The students in our classes now will soon be in their childbearing years and will be directly affected by the decisions that will be made in the near future. Will they be able to join this discussion? Will they know enough about science to successfully question the evidence? Assess the risks? Understand the benefits?
While science and STEM education are critical “workforce” issues, let’s not forget that science literacy for all is an essential skill and knowledge base for citizenship, now more than ever. We are living at a time when our leadership does not see the need for science in its decision making and may favor “alternative” facts over scientific facts.
Understanding and teaching about the human role in modifying our climate has been challenging to date, but imagine teaching about our role in altering mankind. The stakes are high, and arguably human genome editing will have a greater impact than who is at the helm of the National Security Council.
Dr. David L. Evans is the Executive Director of the National Science Teachers Association (NSTA). Reach him via e-mail at devans@nsta.org or via Twitter @devans_NSTA.
The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.
Follow NSTA
This Valentine’s Day, while most media attention was focused on the dismissal of the National Security Advisor, The New York Times ran a story that received much less media attention, but has far greater potential impact on our nation’s future.
By Peggy Ashbrook
Posted on 2017-02-14
Walk outside with your children, watch and count birds for 15 minutes while recording the names of those you know, and report your bird count to be part of a world-wide citizen-science project to collect data on wild birds, creating an annual snapshot of the distribution and abundance of birds. On any or all of these four days, February 17-20, 2017, you will be part of the more than 160,000 people who do this every February for the Great Backyard Bird Count, a global event facilitated by the Cornell Lab of Ornithology, Audubon, and Bird Studies Canada.
Get children ready for the day by looking at the birds that regularly hang out around the play yard or nearby park. The Great Backyard Bird Count website has many tools for identifying birds. I like children to handle life-size cardboard silhouettes of the common birds to help them remember bird sizes and shapes. See February 2007 The Early Years column, “Birds in Winter,” (free to all) for a description of using silhouettes to make bird shape rubbings. See additional resources for children about birds in a March 2011 blog post.
As children see birds, help them tally up the total number seen at a single time (you don’t want to count the same pigeon 25 times!). Observing birds is a great way to begin a discussion on animal diversity, comparing size, colors, and the locations birds seem to prefer. Over time, children begin to identify distinctive bird calls and songs. By entering the data your children collect, they will be helping to answer questions such as, “What kinds of differences in bird diversity are apparent in cities versus suburban, rural, and natural areas?”
When children’s interest in bird watching is high, setting up a feeder near a window can create an on-going science center for collecting data about which species visit which type of feeder. See an example of a data collection sheet that you can revise to show the species in your area. Begin now and your children will see the bird population at their feeder change as the season changes from winter to spring and beyond.
Walk outside with your children, watch and count birds for 15 minutes while recording the names of those you know, and report your bird count to be part of a world-wide citizen-science project to collect data on wild birds, creating an annual snapshot of the distribution and abundance of birds.
Safety Blog
By Kenneth Roy
Posted on 2017-02-14
In science, technology, engineering, and math (STEM) labs, teachers and students can be exposed to a number of electrical hazards such as damaged electrical receptacles, missing ground prongs, and faulty electrical equipment. These hazards can result in electric shock, electrocution, fire, and explosions.
Circuit breakers only protect the science lab and school building—not the teachers or students—from these hazards. A ground fault circuit interrupter (GFCI), a device that constantly compares current flowing from the hot wire to the neutral wire in a circuit, can help protect lab occupants from electrical accidents. If the GFCI senses an imbalance in the current, a switch will open and the current will stop flowing in about 1/40 of a second.
To help maintain your GFCI, the circuit breaker must be flipped on and off a couple of times on a monthly basis to prevent the buildup of corrosion that might interfere with the operation of the GFCI. This is especially true in lab environments that contain corrosive fumes. Warn/inform your colleagues before flipping the breaker, in case computers or other technologies are being used during the maintenance.
According to the Occupational Safety and Health Administration’s QuickFacts (see Resources) teachers should follow these better professional practices to avoid electrical hazards in the lab:
1. Make sure manufacturer’s recommendations are followed when using any electrical equipment.
2. The safest lab equipment has either a three-prong plug (including a ground plug) or double insulation.
3. Make sure any electrical receptacle used near a water source (e.g., sinks, aquariums, wave tanks) is GFCI-protected and operational.
4. Do not use extension cords as a substitute for permanent wiring. This can be a fire hazard.
5. Before using any electrical equipment in the lab, visually inspect the power cord and plug to make sure they are in good condition.
6. If you plug more than two pieces of low-demand equipment (e.g., computer, printer) into a standard outlet, use a fused power strip that will shut off if too much power is used.
7. Do not use power strips for high-demand electrical equipment (e.g., microwave oven, power tools) because they can be a fire hazard. Only plug them into a standard outlet.
8. Never disable any electrical safety feature. For example, never break off a ground prong from a three-conductor plug.
9. Never directly touch someone who is being shocked or electrocuted. Although the human body is a poor conductor of electricity, a wet surface and as little as 1/5 Amp can cause serious injury. If possible, turn off the power (pull the plug or trip the circuit breaker), or use an item made of nonconductive material (e.g., wooden broom handle) to pry him or her away from the electrical source. Call 911 immediately.
10. GFCIs do not protect the individuals from line-to-line contact hazards, when a person holds two hot wires or a hot and a neutral wire at the same time. If a student’s fingers were on the metal prongs of a microscope plug when pushing it into an outlet, for example, this would constitute line-to-line contact. At the least, the student would receive a serious shock.
In the end
To find out whether your lab is GFCI-protected, ask the supervisor of school facilities to survey the lab for GFCI protection. Additionally, hardware or electrical stores usually carry GFCI test devices for about $10, which are simple to operate and can test a whole lab within a few minutes.
GFCI protection is required under National Fire Protection Association (NFPA) and OSHA codes and regulations. Science teachers need to work with administration to make sure their labs are up to code. Further, a licensed electrician or building inspector should check for applications of the NFPA and OSHA standards in science labs. See Resources for more information on electrical safety.
Submit questions regarding safety in K–12 to Ken Roy at safesci@sbcglobal.net, or leave him a comment below. Follow Ken Roy on Twitter: @drroysafersci.
Resources
GFCIs—www.safeelectricity.org/information-center/library-of-articles/55-home-safety/317-ground-fault-circuit-interrupters-gfcis
Electrical circuit-interrupters—www.nfpa.org/public-education/by-topic/top-causes-of-fire/electrical/electrical-circuit-interrupters
OSHA QucikFacts—www.osha.gov/Publications/laboratory/OSHAquickfacts-lab-safety-electrical-hazards.pdf
NSTA resources and safety issue papers
Join NSTA
Follow NSTA
In science, technology, engineering, and math (STEM) labs, teachers and students can be exposed to a number of electrical hazards such as damaged electrical receptacles, missing ground prongs, and faulty electrical equipment. These hazards can result in electric shock, electrocution, fire, and explosions.
By Carole Hayward
Posted on 2017-02-13
We rely on their expertise and have their books lined up on our resource shelves for handy reference, but the opportunity to hear so many NSTA Press authors speak in person is too good to pass up. The array of authors who are scheduled to present at the NSTA National Conference in Los Angeles, March 30–April 2, 2017, is impressive.
The wide range of topic areas ensures that there is something for everyone. Listen to Page Keeley discuss formative assessment probes; Emily Morgan and Karen Ansberry share how to use children’s picture books to teach STEM, inquiry, and more; or Steve Rich present many ways to bring outdoor science in to your students. Some of NSTA Press’ new authors will be there too, discussing big data, STEM, NGSS, and many other topics.
The Advance deadline for registration is fast approaching (February 24), so don’t delay. Register today and secure your opportunity to advance your own professional development by spending time with the experts. NSTA authors have developed classroom-tested solutions to the challenges you face every day.
Here is the complete list of NSTA Press authors and topics:
Uncovering Elementary Students’ Ideas About Science Through Literacy Capacities
Thursday, March 30
12:30–1:30 p.m.
Presenters: Page Keeley and Joyce Tugel
Uncovering K–12 Students’ (and Teachers’) Ideas About Matter and Energy in the NGSS
Thursday, March 30
2:00–3:00 p.m.
Presenters: Page Keeley, Joyce Tugel, and Joel Truesdell
Teaching for Conceptual Understanding in Science: Building a Bridge Between Student Ideas and Scientific Knowledge
Friday, March 31
8:00–9:00 a.m.
Presenters: Richard Konicek-Moran and Page Keeley
Formative Assessment Classroom Techniques for Uncovering ALL Students’ (and Teachers’) Ideas
Friday, March 31
9:30-10:30 a.m.
Presenters: Page Keeley, Joyce Tugel, and Ray Barber
Picture-Perfect STEM Lessons: Using Children’s Books to Teach Science, Technology, Engineering, and Mathematics
Friday, March 31
11:00 a.m.–12:00 p.m.
Presenters: Emily Morgan and Karen Ansberry
Next Time You See…
Friday, March 31
12:30–1:30 p.m.
Presenter: Emily Morgan
Picture-Perfect Science Lessons: Using Picture Books to Guide Inquiry, K–5
Saturday, April 1
12:30–1:30 p.m.
Presenters: Emily Morgan and Karen Ansberry
Flowers to Fruit: Putting Botany Back into Your Curriculum
Friday, March 31
2:00–3:00 p.m.
Presenters: Richard Konicek-Moran and Kathleen Konicek-Moran
Outdoor Science with Birds, Books, and Butterflies
Friday, March 31
3:30–4:30 p.m.
Presenter: Steve Rich
Outdoor Science: A Practical Guide
Saturday, April 1
11:00 a.m. –12:00 p.m.
Presenter: Steve Rich
Inside or Out: The Perfect Place for Connecting Outdoor Science and Children’s Trade Books
Saturday, April 1
2:00–3:00 p.m.
Presenter: Christine Ann Royce and Steve Rich
Argumentation in the Earth and Space Science Classroom
Thursday, March 30
8:00–9:00 a.m.
Presenter: Sharon Schleigh
It’s Debatable: Using Socioscientific Issues to Develop Scientific Literacy, K–12
Thursday, March 30
2:00–3:00 p.m.
Presenter: Sami Kahn
Diving into the NGSS Disciplinary Core Ideas: How and Why They Are Important for Teaching and Learning
Thursday, March 30
3:30–4:30 p.m.
Presenters: Ann Rivet, Ravit Golan Duncan, and Joseph Krajcik
Teaching Energy Across the Sciences
Thursday, March 30
5:00–5:30 p.m.
Presenter: Jeff Nordine
Learn Strategies to Help You Implement the NGSS Practices!
Friday, March 31
8:00–9:00 a.m.
Presenters: Susan Koba and Anne Tweed
Doing Good Science in Middle School
Friday, March 31
8:00–9:00 a.m.
Presenters: Vicki Massey and Olaf Jorgenson
Integrating Engineering Practices into Whole-Class Inquiry Challenges
Friday, March 31
11:00 a.m.–12:00 p.m.
Presenters: Michael Nocella, Dennis Smithenry, and Joan Gallagher
How Scientific Learning Communities Promote Equity and Access Through Whole-Class Inquiry
Friday, March 31
3:30–4:30 p.m.
Presenters: Michael Nocella, Joan Gallagher, Jason Foster, and Poonam Patel
The Power of Investigating: Guiding Authentic Assessments
Friday, March 31
2:00–3:00 p.m.
Presenters: Julie McGough and Lisa Nyberg
Learning to Read the Earth and Sky, Explorations Supporting the NGSS
Friday, March 31
2:00–3:00 p.m.
Presenters: Russell Colson and Mary Colson
Big Data, Small Devices
Friday, March 31
3:30–4:30 p.m.
Presenters: Donna Governor, G. Michael Bowen, and Eric Brunsell
Planning Three-Dimensional Formative Assessments with the Feedback Loop
Saturday, April 1
8:00–9:00 a.m.
Presenter: Erin Furtak
Solar Science = NGSS-Focused Solar Astronomy Experiences + Preparation for the All American Total Solar Eclipse
Saturday, April 1
9:30–10:30 a.m.
Presenters: Dennis Schatz and Andrew Fraknoi
Be a Winner! A Science Teacher’s Guide to Writing Successful Grant Proposals
Saturday, April 1
12:30–1:30 p.m.
Presenters: Patty McGinnis and Kitchka Petrova
Bringing the S-T-E-M Together in Early Childhood Using Science and Engineering Practices
Saturday, April 1
12:30–1:30 p.m.
Presenter: Peggy Ashbrook
Everyday Engineering
Saturday, April 1
3:30–4:30 p.m.
Presenter: Richard Moyer
Problem-Based Learning in the Classroom, K–12
Sunday, April 2
8:00–9:00 a.m.
Presenter: Tom McConnell
Helping Your Students (and You!) Achieve Basic Data Literacy
Sunday, April 2
9:30–10:30 a.m.
Presenters: G. Michael Bowen and Tony Bartley
Register for the National Conference before February 24 and save!
Add Professional Learning Institutes to Your Conference Experience
Professional Learning Institutes (PLIs) are focused, content-based programs that explore key topics in science/STEM education in depth. One-Day PLIs are a preconference full-day session only. Full PLIs begin with a full-day preconference session, followed by pathway sessions that offer further exploration of the topics covered. PLIs are presented by experts in science/STEM education, professional learning, standards implementation, assessment, curriculum, and resources/materials development. Institutes are offered in conjunction with the NSTA National Conference on Science Education and require conference registration.
At the Los Angeles Conference, full PLIs will begin with the preconference one-day session on Wednesday, March 29, 2017, from 9:00 am to 4:00 pm, by preregistration only. The pathway sessions will be scheduled on Thursday, March 30, 2017, and/or Friday, March 31, 2017. The PLI One Day Work Sessions will be held only on Wednesday, March 29, as preconference sessions only.
Los Angeles, California: March 29, 2017
To register online for the Los Angeles conference and to purchase PLI tickets, click here. You may also download a registration form (PDF).
Professional Learning Institute (PLI) Ticket Scholarship Opportunity
The Northrop Grumman Foundation is providing free PLI attendance (a $150 value) to Los Angeles area teachers attending the NSTA National Conference in Los Angeles, March 29–April 2, 2017.
To qualify for a PLI Ticket Scholarship you need to be:
Please complete a short eligibility survey via this link: https://www.surveymonkey.com/r/PLI17
You will receive an email confirming your scholarship once you are accepted based on the criteria listed.
If you have any questions, please contact Wendy Binder at wbinder@nsta.org.
More About the 2017 National Conference on Science Education
Browse the program preview, or check out more sessions and other events with the LA Session Browser/Personal Scheduler. Follow all our conference tweets using #NSTA17, and if you tweet, please feel free to tag us @NSTA so we see it! Need to request funding or time off? Download this letter of support.
The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.
Future NSTA Conferences
Follow NSTA
Save
Save
Save
Save
We rely on their expertise and have their books lined up on our resource shelves for handy reference, but the opportunity to hear so many NSTA Press authors speak in person is too good to pass up. The array of authors who are scheduled to present at the NSTA National Conference in Los Angeles, March 30–April 2, 2017, is impressive.
By Martin Horejsi
Posted on 2017-02-13
As smartphone cameras take on an ever-more sophisticated role in the science classroom, the technical limits of phone photography become more apparent. Luckily, a dose of strong light can overcome many problems as well as provide access to a world unseen by the human eye. But not just any light will work. The amount, color, and frequency modulation of the light all play important roles in scientific photography.
The proper amount of light is a double-edge light saber. Many LED light sources change the brightness by blinking the LED very fast. Unfortunately that blinking can be detected by the camera and shows up in video as flickering lights or dark bars moving across the screen. And the effect is even more pronounced when the slow motion option is engaged. An excellent solution for just such lighting problems is now available with the Surefire FirePak.
Photons from a Phirehose
Surefire is well known as the maker of some of the world’s best flashlights, but recently they have let some of their lighting magic seep into the world of smartphones. With Surefire’s new “FirePak Smartphone Video Illuminator + Charger” lighting system, two troublesome areas of cell phone photography and video capture are solved with one powerful device. By blasting up to 1500 lumens of light onto a subject, the very fast or the very dark are now fair game for the camera. 1500 lumens is about the same as a focused 100 watt light bulb!
Leveraging the sophisticated camera and image processing power of a student’s smartphone can open even more windows into the the high speed, very small, and of course, nighttime and dark worlds you might want to capture. In fact, until you use such a light that is both powerful in output and features, it’s hard to appreciate all the limitations of even the most modern smartphone cameras.
The FirePak is designed for the phone camera and is billed as a mobile lighting solution and device charger. The lightly rectangular block named the FirePak contains a large rechargeable battery, two USB ports (one for charging itself, one for charging other devices), a sliding multi-position switch, a battery indicator light, and two unique LED lights.
What’s unusual about the pair of LED lights is they have asymmetrical 10mm reflectors with one offset in one direction and the other offset 180 degrees. This combination of lights produces full-frame illumination specifically designed for a smartphone’s 16:9 HD aspect ratio. In other words, the FirePak lights up a rough rectangle that is proportioned to what the cell phone camera sees. No wasted light, no dark spots or vignetting.
Schooled
Proper exposure is a combination of three things: shutter speed, lens aperture, and light sensitivity. In the case of slo-mo, the shutter time is very short and the light sensitivity of the camera chip is fixed and depends on the quality of the smartphone. So too is the aperture of the camera’s lens. The solution is to pour more light on the subject to give the camera more to work with in terms of focus and exposure, and make it easier to clearly freeze each frame.
The Surefire FirePak has a six position switch, off—on (but no-light)—low—med low—med high—high. When “on but no-light” is selected, the light output can be controlled by a companion App from up to 10 meters away (which has its own set of advantages). In the video below, the FirePak is cycled from “off” through “high” and back to “off.” It was not mounted on a smartphone, which is why the light was moving relative to the camera’s view.
The runtime for the FirePak on high output is about five hours with a slowly diminishing brightness. You might get about one and a half complete iPhone recharges if the FirePak’s battery is used only for that purpose. And running on the lowest light output of 100 lumens, the FirePak should give about 10 hours of useful light off a full starting charge. Obviously there are many combinations of the above, but you can always head off to school with a full charge if you plug the FirePak into a wall outlet or computer overnight. And you can even charge the Firepak with a traditional external recharging cell phone battery. However, FirePak has a healthy appetite, which is why it has its own large battery, so don’t expect to pull a full charge out of a similar sized backup battery.
Don’t Blink
Another important feature of the Surefire FirePak, and arguably the most impressive, is that the LEDs are modulated at a frequency faster what the smartphone camera uses, even with slow motion. Lesser lights blink on and off rapidly to simulate a dimmer output. But that blinking can be seen by the smartphone camera and appears as flashing or dark lines on the captured video. During higher speed video capture (that produces so-called slo-mo results) the effects are even more pronounced. In the past, our lower-powered incandescent lights produced a constant photon output even when dimmed. In fact it was the electric current of 60 cycles of AC current (in America) that produced blinks and flashes rather than the dimming.
Although taking pictures and video at night or in a dark environment might seem the obvious use for the FirePak, the lighting of subjects that will be recorded in slow motion is truly a win for the FirePak. For a camera to capture video that plays back in slo-mo, it must capture two, three, four, or more frames in the time it normally takes to capture one. So, half-speed slo-mo is about 60 frames per second or twice the normal 30 FPS. Quarter speed playback, meaning one second of real time is shown over four seconds, would take 120 FPS. And the iPhone’s slo-mo is 240 frames per second, or eight times normal. And some other Apps claim up to 1,000 frames per second. With all that speed comes the need for lots of light.
The Surefire FirePak produces a bright stream of light that can easily reach out 20 meters or more when needed, or shine a spotlight on a local scene making closer subject stand out from the background. The low setting of the variable output FirePak is still fairly bright so for closeup photography and video so it may be necessary to hold the FirePak further away from the scene, even if just centimeters. Light output is affected by the inverse square law meaning that the light’s intensity is inversely proportional to the square of the distance from the source. So even a little increase in subject-light distance has a noticeable effect.
The Case in Point
The FirePak is designed to be mounted to the smartphone using a slide-on docking attachment system that begins with a custom Surefire phone case. The dual-rail yoke on the back of the FirePak slides into a pair of slots on the back of the svelte phone case Surefire makes. It’s mostly held in pace by friction, but there is a stopping block that locks the sliding. No buttons or release levers are required to attach or detach the camera from the case.
The FirePak is reversible on the phone case, and I’ve found that when imaging close objects such as those within 20 cm from the lens, the output reflectors on the FirePak might need to be close to the lens to reduce shadows. For everything else, the FirePak can be used with reflectors up or down. For off-phone use, I think a tripod socket on the FirePak would be helpful, or an after-market tripod attachment that uses the same rails as the smartphone case.
At about 38 seconds into the Surefire promotional video below, you can see the blinking from a modulated light source on the curtain in the right of the frame, just before the FirePak overwhelmed the scene with flicker-free lighting.
In the video above, I had to study how Surefire was using the FirePak on a stand during the filming, as the FirePak was the actual lighting source for the video. Surefire was using a clamp to hold the FirePak. I had hoped to repurpose one of my iPod/iPhone tripod clamps, but alas, the FirePak is too narrow to seat in a traditional-sized iPhone clamp. However, being a photographer in a former life, I did have plenty of Bogen/Manfrotto clamps and arms for studio work, as well as tripods. Using a similar solution to Surefire’s video, I was able to position and adjust the FirePak for all smartphone photography and video-shooting situations I could create. Of course, duct tape would also work. And it is with this off-camera lighting that the Bluetooth App control of the FirePak really shines!
There’s an App for that.
The Surefire FirePak will sell for about $200, and the companion app called the Surefire FirePak Illuminator can be downloaded for free onto your Apple or Android phone. The App can talk to the FirePak via Bluetooth allowing some on-screen light control and customization. Additional features of the App include grid overlays for photo composition, tools for white balance, a self-timer, output levels, and exposure brightness (ISO).
It is clear that the trend of student smartphones is not really a trend anymore. It is the new normal. And with all paradigm shifts in capabilities, we teachers should make sure there is plenty of room in our expectations to address and even assess what might have been impossible last semester.
As smartphone cameras take on an ever-more sophisticated role in the science classroom, the technical limits of phone photography become more apparent. Luckily, a dose of strong light can overcome many problems as well as provide access to a world unseen by the human eye. But not just any light will work. The amount, color, and frequency modulation of the light all play important roles in scientific photography.