Skip to main content
 

Revolutionizing Engineering for the Future: Featured Strand at NSTA’s 2015 Area Conference on Science Education in Philadelphia, Pennsylvania, November 12–14

By Lauren Jonas, NSTA Assistant Executive Director

Posted on 2015-10-05

text-based header

This November, the National Science Teachers Association (NSTA) will feature a special strand “Revolutionizing Engineering for the Future” at our 2015 Area Conference on Science Education, in Philadelphia, November 12-14. Engineers recognize and define problems posed around human needs and wants. They design solutions that apply disciplinary core ideas (physical, life, Earth/environmental, space, engineering, and technology). Teachers who focus on engineering can help students develop skills in critical thinking, creativity, and science and engineering practices. Developing engineering practices builds on student learning through actual experience and incorporates Problem-Based Learning and/or Project Based Learning activities and connects students to the world around them. This strand give science teachers deep knowledge of the teaching and learning practices for the application of engineering (reflected in both the NGSS and/or state standards), as well as techniques and strategies to better infuse engineering concepts into the classroom.

Damon BradleyThe featured presentation for this strand will be “Scientific Literacy and the Survival of Our Species,” on Thursday, November 12, at 2:00 PM at the Pennsylvania Convention Center, Ballroom B. Presenter Damon Bradley (NASA Goddard Space Flight Center: Greenbelt, MD) will share his own experiences growing up in the dangerous neighborhoods of South Philadelphia, and how, through learning discipline and hard work from his family, he became a research engineer at NASA. From these experiences, he will present some ideas for keeping students and adults engaged and helping to raise the overall scientific consciousness of American society…and why this is imperative for our own survival.

Below is a small sampling of other sessions on this topic:

  • En-gene-eering: An Engineering Design Challenge for Genetics
  • Your Own Space Program: Engineering a Complete Rocket Launch/Flight/Analysis System from First Principles to Apogee
  • Building Green: Designing Sustainable Solutions
  • Understanding Car Crashes: Engineering Truly Impactful STEM Lessons
  • Nanotechnology in the K–12 Classroom
  • Whoa! Is It Windy!? Engineering a Wind Detection Device

philadelphia preview coverWant more? Browse the program preview, or check out more sessions and other events with the Philadelpia Session Browser/Personal Scheduler. Follow all our conference tweets using #NSTA15, and if you tweet, please feel free to tag us @NSTA so we see it!

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Future NSTA Conferences

2015 Area Conferences

2016 National Conference

2016 STEM Forum & Expo

Follow NSTA

Facebook icon Twitter icon LinkedIn icon Pinterest icon G+ icon YouTube icon Instagram icon

text-based header

 

3 Key Ingredients for Successful STEM Implementation: Trust, Collaboration, and Innovative Thinking

By Guest Blogger

Posted on 2015-10-04

text-based header

A recent Education Week blog post entitled “STEM Reforms in Needy Schools Eroded Quickly” painted a disappointing picture of STEM education reform. In this post, part 2 of a 2-part series* from the National Science Teachers Association (NSTA), Adaliz Gonzalez (the Citywide Instructional Lead for Middle School Science in the Department of STEM at the New York City Department of Education) responds.


Common definitions of STEM focus on the seamless integration of science, technology, engineering, and mathematics. Such integration works well when teachers, who are the experts and responsible parties of delivery of instruction in schools, have initial training, time to plan collaboratively, and (most important) common belief about how students learn best. The National Research Council has stated (and it is well known) that state assessments are not aligned to any STEM program, nor do they assess students’ performance in the progression of knowledge as STEM programs deliver instruction. Therefore, schools districts or schools interested in developing and incorporating STEM programs should think about (1) ways to integrate formative and summative assessments that evaluate student performance around content knowledge and skills necessary in STEM education, and (2) the development of performance tasks that can be used as interim assessments aligned to STEM education and that can inform teachers and school leaders about students’ readiness for state assessments.

Ask the Right Questions, Right from the Beginning

Districts such as Buffalo and Denver implemented STEM programs in struggling schools as a way to remediate and/or motivate students. However, the question for these districts should be: What needs assessments were conducted that informed plans about the deficiencies of students and pedagogy and that would inform sudden reforms that included implementing STEM programs? What steps were taken to help develop a shared vision and to understand teachers’ beliefs about how these students learn best (as well as the common interest combined with aspirations prior to implementing STEM programs in struggling schools)? Part of the failure of STEM programs could be the result of jumping onto the STEM bandwagon too quickly and pushing programs without proper training and transition and without taking into consideration the complexity of what STEM in schools encompasses.

The report states that programs “were cut or watered down, due in part to challenges balancing graduation requirements and STEM courses, accountability measures, and students’ preparedness.” The conclusion is that no one can measure the effectiveness of a program that is implemented one year and then changed over the next few years to meet different requirements. Second, state accountability measures, students’ preparedness, scheduling and teacher programs, and graduation requirements are part of a thoughtful planning process that must happen prior to implementation.

For effective implementation of STEM programs, school leaders need to ensure that there is a gradual change in the school culture, creating one that nurtures trust, collaboration, and innovative thinking. Second, schools in which most of the population receives free or reduced lunch depend greatly on federal and state funds as well as grants that can enhance what is offered to students to enrich their academic repertoire and provide them with a different perspective on how they can use their knowledge and expand their perspective of the career world. However, one common mistake made by schools is to allow their vision to be shaped by these programs and grants, which commonly run out and end after a period of time. Prior to implementing any program or applying for grants, schools teams need to ask: How will this initiative enhance our current curricular offerings? How can this STEM program be a sustainable practice?

Creating STEM programs in schools must do four basic things:

  • Create a shared vision and culture of trust, collaboration, and innovative thinking.
  • Develop curriculum guides and instructional programs that include integration of content, development of skills across subjects, and extracurricular activities aligned to students’ interest and instructional offerings.
  • Have a plan to align the use of resources, human capital, outside organizations, school and outside funds toward achieving the vision for STEM education, as well as aligning key partnerships that will contribute to a sustainable culture and the following of best practices in STEM education.
  • Provide all students with opportunities and awareness of requirements to be highly motivated and pursue STEM careers and college paths.

Successful STEM reform addresses these issues from the start. I will be presenting examples of schools that implemented STEM programs, creating sustainable practices that promoted successful implementation of STEM education, on November 7 in the NSTA Virtual Conference Shifting to Integrated STEM: Experiences of Three School Districts. My co-presenters and I will give several examples in which systemic changes have brought about significant improvements in STEM teaching and learning. We will also discuss what it takes to implement such changes, including the absolute requirement of support by top leaders. Learn more and register. Register early by Friday, October 9, and save $10 off your registration fee: Use promo code NOV_SAVE10.

GonzalezAdaliz Gonzalez is the Citywide Instructional Lead for Middle School Science in the Department of STEM at the New York City Department of Education. She served as a science and math teacher for eighth grade bilingual students in Inwood Intermediate School in New York City for over ten years, and as a Peer Instructional Coach, mentoring colleagues in the understanding using the new teacher reflection rubric.

*Read Part 1: Successful STEM Reform: Leadership Is Key

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Follow NSTA

Facebook icon Twitter icon LinkedIn icon Pinterest icon G+ icon YouTube icon Instagram icon

 

 

text-based header

 

#NSTA Social Scene: October 3, 2015

By Lauren Jonas, NSTA Assistant Executive Director

Posted on 2015-10-03

SocialSceneHeaderBlack

What are science teachers doing in social media this week? Here’s our top 10 favorites!

#1 SHARKTOBER

#2 Science Teachers Rock!

#3 Must Read

#4 Save The Date

#5 Astronaut Alert

#6 Rethink STEM Reform

#7 Mars Onscreen

#8 Candies Not Optional

#9 Eye in the Sky

#10 ICYMI

Facebook icon Twitter icon LinkedIn icon Pinte
rest icon G+ icon YouTube icon Instagram icon

SocialSceneHeaderBlack

What are science teachers doing in social media this week? Here’s our top 10 favorites!

 

Meeting the Demand for Future STEM Teachers

By Debra Shapiro

Posted on 2015-10-02

Third graders in Hofstra University’s STEM Studio ponder how to display the data generated from their pre-exercise/post-exercise pulse rate experiment. PHOTO CREDIT: COURTESY OF HOFSTRA UNIVERSITY

Third graders in Hofstra University’s STEM Studio ponder how to display the data generated from their pre-exercise/post-exercise pulse rate experiment. Photo courtesy of HOFSTRA UNIVERSITY

The University of Virginia (U.Va.) made headlines in August when it announced its new five-year, undergraduate dual-degree program that will allow students to earn a bachelor’s degree in engineering and a master’s degree in teaching, along with a license and endorsement in chemistry, physics, or math. U.Va. joins other universities around the country in offering these programs to meet the demand for science, technology, engineering, and math (STEM) teachers.

“The impetus [for U.Va’s new program] is the Next Generation Science Standards (NGSS),” says Jennifer Chiu, assistant professor in the university’s Curry School of Education. The new standards “place a lot of emphasis on engineering, but most science teachers have a background in science, not engineering. [The dual degree provides] an opportunity to encourage those with an engineering background to become science teachers and to incorporate engineering into science classrooms,” she explains.

The dual degree also was created “out of student interest,” says Chiu. Advisors have reported that engineering students have expressed interest in teaching, with many “suggesting a possible career pathway [of using] their engineering degree for the benefit of society,” she relates.

Students who complete the program “come out with an engineering bachelor’s degree and can work in industry, and are certified to teach in multiple content areas in Virginia.” They earn endorsements in physics, chemistry, and math because engineering degrees require a lot of basic foundation courses in those subjects; “biology and Earth science endorsements involve courses not as prevalent in the engineering major,” she explains.

U.Va. is offering scholarships to students who apply for the program. Ten $10,000 scholarships were awarded this semester, and “five or six” that will “fully fund the students for the master’s portion” are expected to be awarded next year, according to Chiu. “We’re trying hard to get people through [the program],” she adds.

The university also offers experiences to support students in becoming practicing teachers. “Field placements provide opportunities to teach peers science and engineering in methods courses, and weekly student teacher seminars present strategies and solutions to engage students in ways that reflect the practices of the NGSS,” she notes.

Recruiting Engineering Students

Last winter, Philadelphia’s Drexel University launched DragonsTeach, a new program that gives STEM majors the opportunity to minor in STEM education and obtain secondary teaching certification along with their STEM degree. DragonsTeach is a collaborative effort of the College of Arts and Sciences, the College of Engineering, and the School of Education, and is supported by a $1.45 million grant from the National Math and Science Initiative. Eligible students include chemistry, biology, physics, mathematics, and engineering majors.

DragonsTeach arose, in part, from Drexel’s desire to improve the quality of STEM education in the Philadelphia region, as well as its commitment to become the most civicly engaged university in the country. “As a result of the university-wide emphasis on community and education,” says Jason Silverman, DragonsTeach co-director, “a lot of our STEM students are interested in K–12 work, and through DragonsTeach, these students are able to provide meaningful STEM lessons and experiences to Philadelphia students while learning about a career in education.”

DragonsTeach is a partner of the nationally acclaimed UTeach program established by the University of Texas at Austin. “DragonsTeach is unique because it offers an opportunity to recruit engineering students into teaching,” says Jessica Ward, DragonsTeach director of operations. “Historically, UTeach has had difficulty recruiting engineers,” she reports.

Additionally, because Drexel is a five-year, co-op institution, “[t]his means that while students are completing their undergraduate degrees, they can also complete up to 18 months of work experience,” she explains, “so we are recruiting students who are already career-oriented.”

As an incentive beyond additional career options, DragonsTeach provides a stipend to students who earn a B or better in the two introductory recruitment courses: Inquiry Approaches to Teaching and Inquiry-Based Lesson Design. In these courses, DragonsTeach students teach lessons in elementary and middle schools, and “the younger students’ energy and interest in the STEM activities ultimately excite our DragonsTeach students about teaching,” Ward says.

The first two courses help students “know sooner rather than later if teaching is right for [them],” she notes. And after taking them, “even if you don’t want to teach, a lot of the skills learned are applicable to any career,” she contends.

For example, if a student opts for graduate school, he or she will find “the 5E model is good for a teaching assistant job in any major,” she points out. DragonsTeach courses foster communication and leadership skills; co-teaching prepares students “to work in a team environment”; and designing lessons increases creativity and shows students “how to get someone interested in the material you’re trying to convey,” she asserts.

DragonsTeach students teach high school students in subsequent courses, such as Knowing and Learning in Science and Mathematics, in which “students begin to delve into the NGSS,” Ward relates.

Focusing on Engineering Design 

Twenty years ago, Dave Burghardt, engineering professor at Hofstra University in Hempstead, New York, co-created a STEM master’s degree program with “children’s engineering and engineering design at its heart,” he explains. Elementary teachers in the program develop the “knowledge, skills, and attitudes essential for using informed engineering design as a pedagogical strategy in K–12 STEM education,” according to the program’s description. The goal is “design-based activity,” says Burghardt.

With that degree program in mind, Burghardt decided to create “an accessible bachelor’s degree in STEM as a co-major for elementary education majors.” The degree would not require a lot of math courses; it just required “basic algebra, logic, and [an] understanding of math systems, along with introductory, non-major courses in chemistry, biology, and astronomy, and lots of hands-on learning,” he asserts, noting that most bachelor’s degree programs for elementary education majors only require one math and one science course. The degree would feature two STEM capstone courses to provide a broad understanding of the scientific and mathematical foundations of the natural and human-made worlds.

Best of all, every course except the two capstone courses already were being taught at Hofstra. “It was an effective way to use existing resources and can be replicated easily at other schools,” he maintains. “The capstone courses make it unique.”

Burghard
t’s creation, the “BA in STEM, always has engineering design at heart because it enhances a lot of kids’ creativity,” he contends. The degree features “children’s engineering as a part of elementary educators’ portfolio to make science and math more interesting in the classroom. And it does—we have research supporting that,” he declares.

Students earning the degree “have a broad background in all subjects, but also a strong STEM background,” he explains. He tells students, “It’s very accessible, and you’ll be able to enjoy [teaching the material] and impart that to your students. Kids sense when their teacher likes the subject matter…Even [if] you haven’t been a science star in high school, you can be a good STEM teacher.”

The degree makes students more marketable because “superintendents are looking for people with this background,” he reports, noting that the degree “is totally consistent with the NGSS because of its focus on engineering design. It makes it easier to teach to the NGSS.”

This article originally appeared in the October 2015 issue of NSTA Reports, the member newspaper of the National Science Teachers Association. Each month, NSTA members receive NSTA Reports featuring news on science education, the association, and more. Not a member? Learn how NSTA can help you become the best science teacher you can be.

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Follow NSTA

Facebook icon Twitter icon LinkedIn icon Pinterest icon G+ icon YouTube icon Instagram icon
 

Do You Know What You Do Not Know?

By Christine Royce

Posted on 2015-10-01

The recent report by the Pew Research Center was titled “A Look at What the Public Knows and Does Not Know About Science” and according to their website found “….. that most Americans can answer basic questions about several scientific terms and concepts, such as the layers of the Earth and the elements needed to make nuclear energy. But other science-related terms and applications, such as what property of a sound wave determines loudness and the effect of higher altitudes on cooking time, are not as well understood.

There is no doubt that American’s or at least American students have been compared to international counterparts on a variety of different assessments throughout the ages. However, this particular study is a bit different in that it takes twelve questions – one per science topic and utilizes it to measure the public’s knowledge about science in general.

As noted in this month’s edition of the Leaders Letter, popular news media outlets picked up this story as well and Live Science summarized the findings in a short and to the point story. A counter point to this study appeared in Science News where it states that the study was “heavy on trivia and light on concepts” and is worth reading for a balanced view on this now trending on social media report on American’s understanding of science.

So, a better question is, do you know what you do not know? Or better yet…. do you know what your students do not know or have misconceptions about?
nTXoknqyc

There are a variety of resources that help teachers tackle common (or not so common) misconceptions in science and some of these include:

Some groups even help you develop your own assessment to test student’s misconceptions:

As an educator or those who work with professional development opportunities, it may be worthwhile to actually test your own conceptual knowledge or build that into an actual PD event utilizing the professional development indexer which is part of the NSTA Learning Center. The Professional Development Indexer helps you diagnose your needs in specific science content areas and provide suggestions of NSTA e-PD resources and opportunities you may want to consider as you plan your professional development (PD). The Indexer does not assign a grade or present a score to the questions you answer, but saves a list of recommended resources for later review.

So how do you address what you don’t know or work to address what student misconceptions are?

 

 

 

The recent report by the Pew Research Center was titled “A Look at What the Public Knows and Does Not Know About Science” and according to their website found “….. that most Americans can answer basic questions about several scientific terms and concepts, such as the layers of the Earth and the elements needed to make nuclear energy.

 

Documenting weather changes

By Peggy Ashbrook

Posted on 2015-10-01

Children's feet with sneakers and rain bootsAs the wind stirs up and we get a full day of long-awaited rain, children arrive at school in rain boots and coats, and a few in soaking wet sandals. Hurricane Joaquin will bring more rain and wind this weekend as it moves north in the Atlantic, hopefully off the coast not inland.

Taking young children outside to observe the short-term conditions of the atmosphere—weather—is a foundation for later learning about the average daily weather for an extended period of time at that location—climate—as defined by the National Ocean Service of the National Oceanic and Atmospheric Administration.

Visit the National Weather Service’s JetStream: Online School for Weather page and scroll down to see the Köppen climates map. The continental USA has ranges in normal temperatures and amounts of precipitation, so no single lesson plan on weather observations Cover of the October 2015 Science and Childrenwill be a good fit for all. Teaching about your local weather will provide the most opportunities for direct observation that can deepen children’s understanding about weather.

In the October 2015 issue of Science and Children I wrote about children counting and graphing the number of short sleeve shirts, sweaters and jackets that classmates wore to school each day. The clothing is a symbol for the weather, and observing changing trends in outerwear is a focused way to track changes in the immense phenomena that is weather.

 

Children's feet with sneakers and rain bootsAs the wind stirs up and we get a full day of long-awaited rain, children arrive at school in rain boots and coats, and a few in soaking wet sandals. Hurricane Joaquin will bring more rain and wind this weekend as it moves north in the Atlantic, hopefully off the coast not inland.

 

NSTA’s K-12 October 2015 Science Education Journals Online

By Korei Martin

Posted on 2015-10-01

NSTA’s K-12 October 2015 Science Education Journals Online

Looking for ways to talk about climate change with your students? Are your students curious about the nature of science? Want to know how to create interdisciplinary lessons connected to real-world applications? The October K–12 journals from the National Science Teachers Association (NSTA) have the answers you need. Written by science teachers for science teachers, these peer-reviewed journals are targeted to your teaching level and are packed with lesson plans, expert advice, and ideas for using whatever time/space you have available. Browse the October issues; they are online (see below), in members’ mailboxes, and ready to inspire teachers!

Science and Childrensc_oct15_cov

Our rapidly changing climate increases the need for even our youngest students to have a strong background in this area of science. This issue of S&C will help you teach your students about Earth’s systems, with a particular focus on climate.

Featured articles (please note, only those marked “free” are available to nonmembers without a fee):

Science Scopess_oct15_cov

Although middle level science classes often seem self-contained to students, scientific disciplines—and the scientific field at large—do not exist in isolation. The articles in this issue of Science Scope will show you how to collaborate with other science and content-area teachers to create interdisciplinary lessons connected to real-world applications.

The Science Teachertst_oct15_cov

Learning about the nature of science (NOS) is certainly as important as learning about scientific laws and theories. In this increasingly scientific and technological age, personal and societal decisions require a clear understanding of scientific knowledge and how it is generated. NOS tenets need to be intentionally targeted in classroom activities and laboratory investigations and incorporated into all our science teaching. Using case studies from the history of science can help develop students’ understanding of the nature of science and the diverse individuals practicing science and engineering today, as articles featured in this issue illustrate.

Featured articles (please note, only those marked “free” are available to nonmembers without a fee):

Get these journals in your mailbox as well as your inbox—become an NSTA member!

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Follow NSTA

Facebook icon Twitter icon LinkedIn icon Pinterest icon G+ icon YouTube icon Instagram icon

NSTA’s K-12 October 2015 Science Education Journals Online

 

Build Your Professional Network

By sstuckey

Posted on 2015-10-01

In this video, columnist Ben Smith shares information from the Science 2.0 column, “Build Your Professional Network,” that appeared in a recent issue of The Science Teacher. Read the article here: Build Your Professional Network

[youtube]https://www.youtube.com/watch?v=bxgIKB6WIuM&list=PL2pHc_BEFW2LU1a1jgiLNu4NABGw1Zx-Y&index=66[/youtube]

In this video, columnist Ben Smith shares information from the Science 2.0 column, “Build Your Professional Network,” that appeared in a recent issue of The Science Teacher. Read the article here: Build Your Professional Network

[youtube]https://www.youtube.com/watch?v=bxgIKB6WIuM&list=PL2pHc_BEFW2LU1a1jgiLNu4NABGw1Zx-Y&index=66[/youtube]

 

Successful STEM Reform: Leadership Is Key

By Guest Blogger

Posted on 2015-09-30

text-based header

A recent Education Week blog post entitled “STEM Reforms in Needy Schools Eroded Quickly” painted a disappointing picture of STEM education reform. In this post, part 1 of a 2-part series* from the National Science Teachers Association (NSTA), Dr. Cary Sneider (Associate Research Professor at Portland State University in Portland, Oregon) responds.


Schools have a great deal of momentum. They are very difficult to change—especially if just one part of the system is changed without taking into account interactions with other parts of the system. Approving systemic changes to accommodate STEM reform takes political will and therefore support from top educational leaders. Although I don’t know the details of these particular schools, support from top leaders may be a common thread for the problems identified in the report. For example:

Schedule conflicts: The report mentioned scheduling nightmares when guidance counselors tried to fit new STEM courses into existing core requirements. It seems obvious that it would not be possible to incorporate new STEM courses without appropriate modifications to core requirements. The root cause of such a conflict must lie with the people who make policy decisions. If they support STEM reform then they will change the rules to allow it; if they don’t they will block the necessary changes.

State accountability tests: We set an impossible goal when we ask teachers to implement new teaching methods with new goals, and hold them accountable for their students to perform at a high level on the old assessments. New performance-based assessments, consistent with new STEM standards have not yet been developed in any state, and until they are educational leaders should not use inappropriate measures to judge teachers and students.

Personnel changes: The report mentions that courses like physiology and robotics were advertised to students and never actually offered. There could be many reasons why such problems occur (or in this case didn’t occur,) but whatever the reason, teachers were not in a position to offer those courses. Since the deployment of staff to teach various courses is a function of administration, it is likely that these courses did not have sufficient support from the top.

Successful STEM reform addresses these issues from the start. Sneider will be discussing the systemic approach required for educational change on November 7 in the NSTA Virtual Conference Shifting to Integrated STEM: Experiences of Three School Districts. Sneider explains that changing educational systems requires a willingness to examine—and if necessary change—existing policies. He and his co-presenters will give several examples in which systemic changes have brought about significant improvements in STEM teaching and learning. They will also discuss what it takes to implement such changes, including the absolute requirement of support by top leaders. Learn more and register. Register early by Friday, October 9, and save $10 off your registration fee: Use promo code NOV_SAVE10.

Dr. Cary SneiderDr. Cary Sneider is Associate Research Professor at Portland State University in Portland, Oregon, where he teaches courses in research methodology in a Master of Science Teaching degree program.

Read Part 2 of this series: 3 Key Ingredients for Successful STEM Implementation: Trust, Collaboration, and Innovative Thinking

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Follow NSTA

Facebook icon Twitter icon LinkedIn icon Pinterest icon G+ icon YouTube icon Instagram icon

 

text-based header

 

The PASCO Bluetooth Spectrometer: Even Isaac Newton would flip over the power of this digital prism!

By Martin Horejsi

Posted on 2015-09-30

Pasco Wireless Spectrometer

The PASCO Wireless Spectrometer

Simply put, constructivism is a theory of knowledge that argues that humans generate knowledge and meaning from an interaction between their experiences and their ideas. So it follows that nothing is can be more constructivist than exploring the theoretical with real-time tools that measure the invisible. And the PASCO Wireless Spectrometer is just such a tool.
 
[youtube]https://youtu.be/i5BexMng2WY[/youtube]
 
One of the most amazing things about the PASCO Wireless Spectrometer is that it does exactly what you would want it to do; show you the invisible with ease, simplicity, and leave behind a useful digital paper trail of graphs and charts. Although the main purpose of the PASCO Wireless Spectrometer was “specifically designed for introductory spectroscopy experiments” it actually goes farther than that. Much farther. Much much farther!
 
Chinese Teachers

This trio of teachers, two from China and one from Mongolia have limited English speaking skills, but instantly understood the iPad app and PASCO Wireless Spectrometer. Seems that light is also a universal language.

 
The physics and electronics behind the PASCO Wireless Spectrometer are straight forward. The output is clear and obvious. And the mobility aspect is unprecedented. In other words, it does what it should how it should. Amazing enough on its own, but in true paradigm shifting fashion the PASCO Wireless Spectrometer presents the invisible world of visible light in the magical cartoon chart we’ve seen only in static textbooks for most of our lives. It’s as if the dinosaur skeletons in dusty museums suddenly came alive and reacted to the world.
 
[youtube]https://youtu.be/Cy-qVMqcV1Y[/youtube]
 
Visible light, or the light our human eyes sense and convert to electrical impulses to our brains, only encompass a tiny fraction of the electromagnetic spectrum. Wavelengths between 390-700 nanometers, or from the short blue/violet waves to the longer orange/red ones with green and yellow in the middle. Infrared waves are just a little too long for us to see, and ultraviolet ones are a little too short. Even longer are radio waves, and even shorter are x-rays. The PASCO Wireless Spectrometer has a range of 380 to 950 nanometers meaning it can “see” a little into the ultraviolet and a lot into the infrared.

 
PASCO Wireless Spectrometer

An ultraviolet light spikes the graph just outside the shortest wavelength we can see with our eyes.

 
Where this all comes together is that when the PASCO Wireless Spectrometer and various light sources are manipulated with our hands, the extended visible spectrum becomes something we can explore with the same cognitive dexterity as the microscope affords us in biology. When used in the classroom for demonstrations and explorations, the PASCO Wireless Spectrometer literally lets “humans generate knowledge and meaning from an interaction between their experiences and their ideas.” So yes, the PASCO Wireless Spectrometer is the epitome of constructivist theory into educational practice.
 
PASCO Wireless Spectrometer

Isaac Newton

Although Isaac Newton is credited with discovering the inner workings of visible light back in the latter 1600s, the basic concept behind a rainbow was suggested by Roger Bacon 400 years earlier who in turn drew upon the works of Claudius Ptolemy a millennium before, and even Aristotle another 300 years before that.
Roger Bacon

Roger Bacon

 
PASCO Wireless Spectrometer

Claudius Ptolemy

 
Aristotle

Aristotle

As a quick digression here, the Newtonian physics behind the PASCO Wireless Spectrometer has roots much more than five times deeper into the past than Mr. Newton’s distance in time is from us right now. Sorry to go all Einstein on you, but the individual colors of visible light that Newton coaxed out of sunlight with only a glass triangle, and then reassembled with nothing more than a companion prism was like yesterday.  Yet the attempts to explain the phenomena were first floated last week.
 
[youtube]https://youtu.be/49F3yj_3GVY[/youtube]
 
And now to think that within the palm of a student’s hand and the screen of their iPad is a gift of knowledge as great as the discovery itself. A stretch? Perhaps, but unless a scientific concept can be truly understood to the point one can make personal meaning out of the discovery, memorized facts are little more than coins used to buy grades.
 
Technically speaking, the PASCO Wireless Spectrometer is a battery operated spectrometer that uses Bluetooth wireless or a USB wire in order to communicate with a computing device running the necessary software. With its own built-in LED-boosted tungsten light source and three nanometer resolution, the PASCO Wireless Spectrometer provides an exceptional tool for traditional experimentation with pl
enty of room left over to inspect rarely explored specimens of light scattered throughout our lives.
 
PASCO Wireless Spectrometer
 
The operation of PASCO’s unassuming black brick puts the power of spectrometry into the hands of grade school students and Ph.D. candidates alike. While maybe not the most durable block in the scientific toy box, the PASCO Wireless Spectrometer does offer a level of simplicity (when desired) as easy to use as  glass prism and sunlight. Of course you can do much more with the PASCO Wireless Spectrometer, but you don’t have to in order to get your money’s worth. This spectrometer does so much so well so easily that it literally rewrites lesson plans just by walking into the classroom.
  
On a higher level, the PASCO Wireless Spectrometer can be used in chemical experiments of intensity, absorbance, transmittance and fluorescence all while using a device that, according to PASCO, has light pass through the solution and a diffraction grating and then a CCD array detects the light for collection and analysis. Sounds simple enough just like a digital prism should. Except this one gives about nine hours of service per battery charge.
 
In the off chance that the battery fails, it is user-replaceable. in the off chance the light burns out, it is user-replaceable. And in the likely chance that liquid from a cuvette spills into the holder, a drain hole limits the damage, and cleaning the holder is user-serviceable with a cotton swab and deionized water.
 
PASCO Wireless Spectrometer

A portable studio light is used to provide a background of predictable photons in order to explore the absorbance properties of various types of matter including sunglasses, polarizers, fabric, and theater lighting filters.

 
 
The PASCO Wireless Spectrometer must interface with a computer or tablet. Both Mac and Windows are supported as is iOS and Android. 
 
 
PASCO also suggests using the Wireless Spectrometer for the following popular labs:
  • Absorbance and transmittance spectra
  • Beer’s Law: concentration and absorbance
  • Kinetics
  • Fluorescence
  • Photosynthesis with DPIP
  • Absorption spectra of plant pigments
  • Concentration of proteins in solution
  • Rate of enzyme-catalyzed reactions
  • Growth of cell cultures
  • Light intensity across the visible spectrum
  • Emission spectra of light sources
  • Match known spectra with references 
And PASCO also provides several sample labs for plug-and-play directly into the chemistry classroom. But the really exciting plug-and-play option is the accessory fiber optic probe. With no more effort than sliding a faux cuvette into the receiving slot on the spectrometer, a meter-long fiber cord moves a directional sensor out into the wild where it can capture photons from all kinds critters. Some of my favorite animals include UV lights, filtered lightbulbs, various school lighting sources, sunlight though sunglasses, polarizers, and pretty much any LED flashlight I can find, especially the really good ones.
 
PASCO spectrum example
 
Although the screen output from the PASCO Wireless Spectrometer’s software is a graphical representation of a physical property, it takes almost no mental gymnastics to understand the changes to the graph once your mind is oriented to the display. The color-coded background and gesture-ready scaling provides an exceptionally smooth relationship with the data to the point all the hardware and software disappear leaving only the experiment and the results. And in my book, that kind of invisibility is the true measure of success with a teaching product.
 
When teaching the next generation about the important discoveries of the past generations, we have an obligation to use the most powerful educational tools possible. The PASCO Wireless Spectrometer is truly 100% pure constructivism-in-a-box. It turns experiences and ideas into personal meaning. Battery included and no wires necessary.
 
 
Asset 2