Skip to main content

Science Curriculum Topic Study: Bridging the Gap Between Three-Dimensional Standards, Research, and Practice, Second Edition

Scientific literacy for all students requires a deep understanding of the three dimensions of science education: disciplinary content, scientific and engineering practices, and crosscutting concepts. If you actively engage students in using and applying these three dimensions within curricular topics, they will develop a scientifically-based and coherent view of the natural and designed world.
Scientific literacy for all students requires a deep understanding of the three dimensions of science education: disciplinary content, scientific and engineering practices, and crosscutting concepts. If you actively engage students in using and applying these three dimensions within curricular topics, they will develop a scientifically-based and coherent view of the natural and designed world.
If you’ve ever wished for advice you can trust on how to make science and math more relevant to your middle or high school students, Creating Engineering Design Challenges is the book for you. At its core are 13 units grounded in challenge-based learning and the engineering design process. You can be sure the units are classroom-ready because they were contributed by teachers who developed, used, and revised them during the Cincinnati Engineering Enhanced Math and Science (CEEMS) program, a project funded by the National Science Foundation.
If you’ve ever wished for advice you can trust on how to make science and math more relevant to your middle or high school students, Creating Engineering Design Challenges is the book for you. At its core are 13 units grounded in challenge-based learning and the engineering design process. You can be sure the units are classroom-ready because they were contributed by teachers who developed, used, and revised them during the Cincinnati Engineering Enhanced Math and Science (CEEMS) program, a project funded by the National Science Foundation.
Show your students how amazing it can be to just “see what will happen” when they blend biology, engineering, and serendipity. Focusing on innovations sparked by accidental or unexpected observations, the case studies in this resource are a lively way to integrate engineering and experimentation into your biology classes. Middle and high school students will learn fundamental science processes while using their natural curiosity to explore ideas for new applications and products.
Show your students how amazing it can be to just “see what will happen” when they blend biology, engineering, and serendipity. Focusing on innovations sparked by accidental or unexpected observations, the case studies in this resource are a lively way to integrate engineering and experimentation into your biology classes. Middle and high school students will learn fundamental science processes while using their natural curiosity to explore ideas for new applications and products.

Creating Engineering Design Challenges: Success Stories From Teachers

If you’ve ever wished for advice you can trust on how to make science and math more relevant to your middle or high school students, Creating Engineering Design Challenges is the book for you. At its core are 13 units grounded in challenge-based learning and the engineering design process. You can be sure the units are classroom-ready because they were contributed by teachers who developed, used, and revised them during the Cincinnati Engineering Enhanced Math and Science (CEEMS) program, a project funded by the National Science Foundation.
If you’ve ever wished for advice you can trust on how to make science and math more relevant to your middle or high school students, Creating Engineering Design Challenges is the book for you. At its core are 13 units grounded in challenge-based learning and the engineering design process. You can be sure the units are classroom-ready because they were contributed by teachers who developed, used, and revised them during the Cincinnati Engineering Enhanced Math and Science (CEEMS) program, a project funded by the National Science Foundation.

Matter and Energy for Growth and Activity, Student Edition

How do our bodies manage to heal wounds, build the stamina to run marathons, and give us the energy—even while we’re sleeping—to keep us alive and functioning? Matter and Energy for Growth and Activity prompts high school students to explore fascinating questions like these. It takes a new approach to teaching essential ideas about food, human body systems, matter and energy changes, and chemical reactions.
How do our bodies manage to heal wounds, build the stamina to run marathons, and give us the energy—even while we’re sleeping—to keep us alive and functioning? Matter and Energy for Growth and Activity prompts high school students to explore fascinating questions like these. It takes a new approach to teaching essential ideas about food, human body systems, matter and energy changes, and chemical reactions.

Matter and Energy for Growth and Activity, Teacher Edition

How do our bodies manage to heal wounds, build the stamina to run marathons, and give us the energy—even while we’re sleeping—to keep us alive and functioning? Matter and Energy for Growth and Activity prompts high school students to explore fascinating questions like these. It takes a new approach to teaching essential ideas about food, human body systems, matter and energy changes, and chemical reactions.
How do our bodies manage to heal wounds, build the stamina to run marathons, and give us the energy—even while we’re sleeping—to keep us alive and functioning? Matter and Energy for Growth and Activity prompts high school students to explore fascinating questions like these. It takes a new approach to teaching essential ideas about food, human body systems, matter and energy changes, and chemical reactions.
 

Intentionally providing materials to sort

By Peggy Ashbrook

Posted on 2019-11-26

In addition to providing materials for children, we can ask ourselves, “What is my role as an educator when I provide materials for sorting?” If we were picking through lentils to sort out any wee stones before cooking, our job would be to give children experiences and information to help them identify what is a stone and what is a lentil. If we are sorting laundry to be washed, we would give children experiences and information about color bleeding and absorption to help them understand the reason for sorting. What is the reason for sorting a basket of multicolored and various sized plastic bears? Through sorting activities children are introduced to the idea of attributes, such as size, color, and weight. Non-uniform natural materials with more variation between items provide more challenging sorting experiences. “This rock is biggest.” “And the other rocks are littler.” An educator might ask, “How many different sizes are there?” Or, “Can they be put in a line from biggest to smallest?” Children will have ideas of their own on how the rocks should be sorted.

Child sorts small rocks into an egg carton.

Sorting is one way to use and make sense of data. It is a way to classify living organisms, materials and objects. Through many experiences making observations of earthworms, children learn that earthworms do not have legs. This knowledge helps them classify caterpillars and other larvae (such as beetle larvae often called “mealworms”) as not-worms but something else. They may decide that something else is an insect based on two attributes—the presence of legs, and having six legs. And put millipedes in a separate group based on their “many, many” legs.

One of the Erikson Institute Early Math Collaborative’s Big Ideas is that “attributes can be used to sort collections into sets.”  “Young children who understand the Big Idea that attributes can be used to sort collections into sets have a working knowledge of what a set is and how it is constructed.”

In Incorporating Math into Your Cold-Weather Routines, Math at Home blogger Diann Gano describes how she uses sets of cold-weather gear to help preschool children learn routine and patterns and sequence while teaching them to be self-sufficient. See her photos of a two-year-old demonstrating the “firefighter flip” for  getting the jacket on with arms in the correct armholes. In another post Gano relates how collected natural materials involved children in arranging the materials, sorting and creating patterns.

“One major use of pattern recognition is in classification, which depends on careful observation of similarities and differences; objects can be classified into groups on the basis of similarities of visible or microscopic features or on the basis of similarities of function” (NRC). Patterns is one of the Next Generation Science Standards (NGSS) Crosscutting Concepts, concepts that bridge disciplinary boundaries, uniting core ideas throughout the fields of science and engineering.

Having an intention for offering materials for children’s use means we have some idea of what children are capable of and what they will learn through using the materials. Children may have other ideas—they usually do! In the Early Years column in the November 2019 issue of Science and Children I wrote about how children’s sorting ideas made me reconsider how the random grouping of model (toy) animals in one tub on the shelf affected how children sorted them, and perhaps led to some misconceptions. 

National Research Council (NRC). 2012. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: The National Academies Press.

In addition to providing materials for children, we can ask ourselves, “What is my role as an educator when I provide materials for sorting?” If we were picking through lentils to sort out any wee stones before cooking, our job would be to give children experiences and information to help them identify what is a stone and what is a lentil. If we are sorting laundry to be washed, we would give children experiences and information about color bleeding and absorption to help them understand the reason for sorting.

 

Star Light, Star Bright

By Gabe Kraljevic

Posted on 2019-11-25

I was planning a lesson for fifth grade about constellations. If you have any ideas, I would love to hear them.
—B., Illinois

Students often develop the misconception that constellations are two-dimensional. It’s like looking at a road map and never understanding that there is a three-dimensional topography to the land. I would stress that the stars in a constellation are almost all at different distances from Earth. Your students can research their own constellations to make three-dimensional models which, when viewed from the right direction, form the shape we know. The American Museum of Natural History has some related activities http://bit.ly/346dKi0.

Students should make some night observations of stars, the Moon, and planets. There are many online maps to download for each month of the year. Have students learn the prominent constellations and how to use “finder stars.” Have your students construct planispheres—simple paper-and-card stock dial maps that you rotate to the correct time and date for observation. There are many to choose from online such as this one from Sky & Telescope: http://bit.ly/2po0Q0f.

Why not make the lesson cross-curricular? The sky map we follow reflects Greek culture from two and a half millennia ago. The names and stories of the constellations are interesting to students as they ponder why there is a harp (Lyra) and a winged horse (Pegasus) in the sky, and who was Perseus? Give them a star map without lines or names. Ask them to make up their own constellations and stories. I can bet you that they will see cell phones, anime characters and pop stars.

Hope this helps!

Image by Gerd Altmann from Pixabay

I was planning a lesson for fifth grade about constellations. If you have any ideas, I would love to hear them.
—B., Illinois

Discovery Engineering in Biology: Case Studies for Grades 6–12

Show your students how amazing it can be to just “see what will happen” when they blend biology, engineering, and serendipity. Focusing on innovations sparked by accidental or unexpected observations, the case studies in this resource are a lively way to integrate engineering and experimentation into your biology classes. Middle and high school students will learn fundamental science processes while using their natural curiosity to explore ideas for new applications and products.
Show your students how amazing it can be to just “see what will happen” when they blend biology, engineering, and serendipity. Focusing on innovations sparked by accidental or unexpected observations, the case studies in this resource are a lively way to integrate engineering and experimentation into your biology classes. Middle and high school students will learn fundamental science processes while using their natural curiosity to explore ideas for new applications and products.
Subscribe to
Asset 2