Next Gen Navigator
By Hallie Booth
Posted on 2020-01-29
Creating an Environment for All Students to Show Their Understanding
Much discussion has focused on how the NGSS (and other state standards based on the Framework and NGSS) make science accessible to all students. I believe all students can be successful when lessons are designed to use the three dimensions to make sense of phenomena.
What Does an NGSS Classroom Look Like?
The NGSS classroom looks very different from the traditional classroom. Unlike past standards, the NGSS require students to develop ownership of the big ideas in science, not just memorize broad definitions with examples. Students are driving their own learning through the unit and creating artifacts demonstrating their in-depth understanding of the science ideas along the way. All of my units begin in the same way to ensure all of my students have equal-access sensemaking. I offer this glimpse into the thinking and intention of how I start each unit to ensure from the beginning that I am focused on how I can support and engage all students in my classroom:
The questions students ask (and new questions that arise) drive the unit. We decide which question (or questions) we will try to answer, which leads us to the next lesson, and then the next question.
Intentionally Supporting Students
I find that all my students learn from one another through engaging with the science and engineering practices and having opportunities to demonstrate their understanding of the science ideas. As I analyze my class data, individual student demographics aren’t apparent: The data shows students who exceeded the “basic level” of the performance expectations, those who mastered them, and those (less than 10%) who need additional opportunities to engage in the practices to make sense of the targeted science ideas. I find student success is directly linked to the numerous opportunities they are given, opportunities that meet them at their current level of understanding and gradually bring them to an increase in rigor. This also allows students who have a greater understanding of the science ideas to begin higher and create related extensions. The students know where to begin by evaluating the self-guided proficiency chart.
Remediation is based on what my formative assessments tell me the students are struggling with most. In these mini-sessions, I ask specific questions about their artifacts or work on short, guided-learning tasks with them. After the mini-sessions, students tend to clarify any misunderstanding and indicate areas that need to be clarified. I will hold these additional sessions right before the summative assessment to answer any last-minute questions.
Teaching NGSS holds teachers more accountable for developing coherent storylines built around relevant phenomena and integrating the science and engineering practices and crosscutting concepts into each lesson or activity to support students while they are building their science knowledge. Through this process, I have been able to develop opportunities to individualize the learning experience and ascertain the level of mastery for each of my students. Since I started this, I have had tremendous feedback from several students in all demographics:
As teachers, we want all students to be successful, so it is up to us to create a classroom environment that allows this to happen. It is up to us to design units/lessons that make it clear what students are trying to figure out, that are relevant and engaging to students, and that are scaffolded in a manner that helps every kid feel supported. When we have students who are not successful, we have to look inward and ask what we can do differently to enable their success.
Students’ resources
Hallie Booth has spent 25 years in education, serving as an instructional specialist, assistant principal, principal, and the Kentucky Department of Education Regional Science Lead. She currently teaches eighth-grade science at Ballyshannon Middle School in Boone County, Kentucky. Booth holds a Bachelor of Arts (BA) degree in Criminal Justice Law Enforcement, a BA in Elementary Education, a masters in special education, an endorsement in K–9 science education, and a Rank 1 in leadership. She has served as a Common Core fellow, an Education Nation panelist, a Literacy Design Collaborative trainer, an education consultant for the Southern Regional Education Board, and a Thurgood Marshall Foundation trainer. Contact her via Twitter: @alwaysreach1.
Note: This article is featured in the January 2020 issue of Next Gen Navigator, a monthly e-newsletter from NSTA delivering information, insights, resources, and professional learning opportunities for science educators by science educators on the Next Generation Science Standards and three-dimensional instruction. Click here to sign up to receive the Navigator every month.
The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.
Creating an Environment for All Students to Show Their Understanding
Much discussion has focused on how the NGSS (and other state standards based on the Framework and NGSS) make science accessible to all students. I believe all students can be successful when lessons are designed to use the three dimensions to make sense of phenomena.
What Does an NGSS Classroom Look Like?
By Julia Deevers-Rich
Posted on 2020-01-29
In one of my favorite lessons, I take my kindergarten students outside to explore the schoolyard. Though I take my students outdoors throughout the year, I do this lesson at the beginning of the year because it’s an opportunity to teach students to make observations and ask questions. I love seeing my students’ excitement grow as they move around the schoolyard, noticing and wondering about everything! I also get a chance to learn about my students and the wealth of ideas and experiences with nature they bring with them to school.
In this lesson, students begin to develop elements of the Science and Engineering practice of Analyzing and Interpreting Data: Record information (observations, thoughts, and ideas) and Use and share pictures, drawings, and/or writings of observations. We talk about our five senses and how to use them to make observations. I also want to develop the Asking Questions element: Ask questions based on observations to find more information about the natural and/or designed worlds.
Students walk around the school grounds looking for something in nature they would like to observe closely. I like to have everyone walk in silence or very quietly so they can hear the sounds in nature. They might see a bird or butterfly nearby, or find one of the courtyard box turtles eating some tomatoes from our class vegetable garden spot. Many different flowers and plants surround the area, too. When students find that one thing they want to study further, they draw what they see and record in words, pictures, and symbols what they’ve observed with their other senses. They can also measure the object using grade-appropriate tools.
I ask the students to think about questions they could ask about the object. Then students share with a partner or small group the observations they made and the things they are wondering about the object. Their partner or group members can then ask additional questions and share their own observations.
Every student has access to this type of learning to help them succeed, and each is bringing different experiences to share with others while experiencing all kinds of new things in nature.
In one of my favorite lessons, I take my kindergarten students outside to explore the schoolyard. Though I take my students outdoors throughout the year, I do this lesson at the beginning of the year because it’s an opportunity to teach students to make observations and ask questions. I love seeing my students’ excitement grow as they move around the schoolyard, noticing and wondering about everything! I also get a chance to learn about my students and the wealth of ideas and experiences with nature they bring with them to school.
NSTA Reports
By Debra Shapiro
Posted on 2020-01-29
Organizations around the country are helping students and teachers experience the challenges and rewards of building a full-size airplane, allowing students to apply science, technology, engineering, and math (STEM) as well. One organization, Texas nonprofit Tango Flight, builds airplanes with students at high schools nationwide. President and co-founder Dan Weyant, Career and Technical Education (CTE) teacher at East View High School in Georgetown, Texas, says the worldwide “demand for pilots, aerospace engineers, and mechanics” inspired him in 2016 to ask his principal and district superintendent if he could establish a year-long class to build a Van’s Aircraft RV-12 two-seat, single-engine, low-wing airplane with students at East View and Georgetown High Schools. Weyant chose the RV-12, which is built from a kit, making it relatively easy to construct compared to other aircraft.
Weyant successfully addressed administrators’ concerns, such as liability. “To mitigate liability, Tango Flight owns the planes and manages assets,” he explains. When a school or district completes a plane, Tango Flight sells it, and the money goes back to the local program to fund the next plane build.
It costs about $100,000 to start the program, he adds, but “there are many ways to fundraise this; the district doesn’t have to pay it all upfront.” Aircraft manufacturer Airbus Americas has funded builds, as well as local aviation museums, businesses, and the city government. Local businesses and nearby colleges and universities also provide mentors for the students.
The first Tango Flight class was a partnership among the two schools, Tango Flight, local businesses, and the STEM program Project Lead the Way (PLTW), on which the curriculum was based. Since then, Weyant, university partners, and Airbus Americas have created a college-level Tango Flight curriculum now used by participating high schools. Tango Flight operates in eight schools in Georgetown, Texas; Wichita, Kansas; Mobile, Alabama; Naples, Florida; Manchester, New Hampshire; Atlanta, Georgia; and Yuba City, California.
“We provide curriculum, training [for teachers and mentors], technical support, and instruments,” Weyant relates. Some Tango Flight schools have students do internships with local businesses, he notes.
Mike Tinich was a PLTW aerospace engineering teacher at Maize South High School in Wichita, Kansas, when contacts at Wichita State University (WSU) recommended him to funder Airbus Americas to do a Tango Flight build. “We built our first plane while [the Georgetown, Texas, group] built their second one…We had a lot to learn, but we had the benefit of their knowledge from their first build,” he recalls.
“We had Airbus engineers work with us as mentors,” and WSU Tech, the local technical college, provided “an experienced airframe [plane structure] instructor to help teach procedures and inspect the finished product,” Tinich reports.
“We were still teaching PLTW during the build, but [Tango Flight] was [the] lab activity. Trying to incorporate both was a challenge,” he admits. “Sometimes the plane took precedence because we had to make sure the plane was safe to fly. ”
Having enough space to build a plane was a dilemma. “The logistics of doing it in a normal classroom were crazy,” Tinich contends. Besides needing room to work, they had “to organize thousands of parts.” Fortunately, “in January 2017, [our school] opened a Career and Technical Center, and the new room had a hangar door on it and more space,” he adds.
“We made a lot of mistakes during the first year, even working with engineers,” Tinich recalls. “But the kids could see adults fail, then move on. [They saw that] failure is an option!”
Students most enjoyed “the opportunity to work with an engineer…It opened their eyes up to opportunities in the aerospace industry,” says Tinich. “Building a plane taught them so much more than just the knowledge of why we have to measure twice and cut once. There was a lot of problem-solving [experience] that was invaluable.”
In the Wings Aerospace Pathways (WAP) program held by Wings Over the Rockies Air & Space Museum in Denver, Colorado, students “build and fly drones; earn [Commercial Drone Pilot Certification];…take concurrent enrollment courses toward an A&P [Airframe and Powerplant (engine system)] certification;…and build the RV‑12,” says April Lanotte, the museum’s director of education. Designed for students in grades 6–12, WAP is an enrichment program for homeschooled students, those in online schools, and students in traditional schools that allow them to be released one day each week to participate.
Middle school students learn skills to prepare them to build a plane as high school students: using tools, soldering, and learning about basic electronics, ham radios, and aviation and space history, for example. “It helps middle school students decide what’s next for them,” whether they’d like to be pilots, mechanics, or work in another position in the industry, Lanotte maintains.
When choosing students for the build, CTE Coordinator/Instructor David Yuskewich says, “I look for students who are on-task, good at following directions, self-directed, focused, know what tools to use, and are able to lead other students.” In WAP’s tools and skills classes, “parts of the plane that are not done right have to be scrapped, which costs money and time. I don’t accept any less than perfect on the plane,” he asserts.
“During the build, the students do 80% of the work. A group of adults come in on Saturdays and do the rest of the work to keep things on track,” Yuskewich explains.
Students “wear safety glasses, ear protection, aprons, and gloves, so no one gets hurt,” he reports.
“We have a low mentor-to-student ratio so no student works alone,” Lanotte adds. “Students must be technically and mentally able to do the work for safety reasons. They take it seriously.”
Volunteers who have worked in the industry serve as mentors, including inspectors who can certify the work. “I am an EAA Technical Advisor and inspect the planes. We also have a volunteer who is a technical advisor and serves as ‘outside eyes’ when inspecting the planes,” says Yuskevich.
“We [also] have a team of students who are working on restorations of old planes,” reports Lanotte. “These planes won’t be flown again, but students are copying and 3-D printing parts that aren’t available anymore.”
Though WAP’s annual tuition is $1,000, “we do have scholarships, so no one is turned away,” assures Lanotte. “We work with a local school district with a high [number of low-income students]; they receive 100% funding.” Many students, she adds, “earn elective credits” by taking the WAP classes.
This article originally appeared in the February 2020 issue of NSTA Reports, the member newspaper of the National Science Teaching Association. Each month, NSTA members receive NSTA Reports, featuring news on science education, the association, and more. Not a member? Learn how NSTA can help you become the best science teacher you can be.
The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.
Organizations around the country are helping students and teachers experience the challenges and rewards of building a full-size airplane, allowing students to apply science, technology, engineering, and math (STEM) as well.
By Beth Allan
Posted on 2020-01-28
Why teach evolution? Evolution isn’t just a unifying concept that connects elements of the natural world: It’s also the link among science, our students, and their world. Why is that important? Evolution can be used as a “hook,” a way to show how the natural interests of all students—not just the students who “like” science—can relate to science and how science can be interesting and relevant to their world. When students view science as relevant, they become eager to learn more, and isn’t that the purpose of school?
Evolution also explains where the natural world has been and what was there, and suggests where we may be going. The exciting part is when creative and purposeful science educators show students how evolution can integrate with every subject.
If your students are interested in history, discuss how the history of the medieval times, the Renaissance, and even recent history is influenced by evolution and mirrors the process of change over time. Are your students interested in art? You can point out how some of the most beautiful creations mirror nature, are found in nature, and are there through the process of evolution. Want to include politics? Have students look back to the Irish Potato Famine and the political effects of starvation and mass migrations, or look ahead to the political effects of climate change.
Whatever the level and whatever the subject, evolution is an underlying core principle that not only unifies the sciences, but also is a unifying theme across all STEAM (Science, Technology, Engineering, Art, Math) subjects. It helps explain the “why,” but even more powerfully, it allows students to make connections among the subjects by asking “what if.” And that matters. For all students.
Dr. Elizabeth “Beth” Allan is president-elect of the National Science Teaching Association. She began serving her one-year term on June 1, 2019, and will assume the office of president on June 1, 2020. Allan is currently Professor of Biology and Coordinator of the Secondary Science Education program at the University of Central Oklahoma in Edmond, Oklahoma.
The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.
Why teach evolution? Evolution isn’t just a unifying concept that connects elements of the natural world: It’s also the link among science, our students, and their world. Why is that important? Evolution can be used as a “hook,” a way to show how the natural interests of all students—not just the students who “like” science—can relate to science and how science can be interesting and relevant to their world. When students view science as relevant, they become eager to learn more, and isn’t that the purpose of school?
Early Childhood / Preschool Blog
By Peggy Ashbrook
Posted on 2020-01-28
Winter weather often makes us wonder how wild animals survive without a heated environment. Combining this wondering with children’s love of teddy bears, and the 100’s of bear songs and finger plays to be found online, and it’s no surprise that early childhood educators may plan “to do” bears—a week of activities involving bear images and songs, imaginative play, and mostly fiction books featuring bears. What may be missing, depending on where you live, is any actual experience with bears or any scientific content.
Playing and learning scientific knowledge (and how it is gathered and tested) are both important parts of early childhood education, and can happen together. Dramatic or pretend play is crucial to children’s development and helps them make sense of their world and relationships, learn to express their emotions in socially acceptable ways, while developing oral language and fine and large motor skills. It is another way educators can learn what children know and think, including about scientific ideas. Do the “bears” in your classroom only hunt meat? (Read Blueberries for Sal by Robert McCloskey.)
With the arrival of spring children may become aware of insects prompting teachers to plan a “Bug Week” involving small colored models of insects for sorting and making patterns, crafts to make an insect, ladybug spot counting math games, “bug” snacks, and reading many books, both fiction and non-fiction. Expanding theme weeks from activities and crafts to learning that includes science ideas and conversations builds children’s beginning ability to “make informed decisions about scientifically-based personal and societal issues” (NSTA position statement). Young children are not yet ready to take on the responsibility of solving environmental problems created by their elders but they can make decisions, such as wearing a coat outside, based on data—their own measurements of air temperature and observations of personal feelings of cold or warm.
Here are two documents that can help you know which elements of a theme to keep and what to add to expand an activity into an exploration using the practices of science and engineering:
The January 2020 National Science Teaching Association’s position statement, The Nature of Science (also has a clear explanation of the difference between scientific laws and theories), and,
“To Pin or Not to Pin? Choosing, Using, and Sharing High-Quality STEM Resources,” an article in Young Children with supportive questions in “Part 1: Considerations for selecting high-quality STEM experiences for early childhood classrooms.”
Doing science involves “naturalistic explanations supported by empirical evidence that are, at least in principle, testable against the natural world. Other shared elements include observations, rational argument, inference, skepticism, peer review, and reproducibility of the work” (NSTA).
All of these elements are present in developmentally appropriate ways in early childhood science explorations and investigations, science talks, and children’s drawings and writings about their experiences.
For example, when children make measurements and record observations of weather phenomena—air temperature, amount of precipitation, and cloud cover (see Science and Children Resources—they can relate their data to their day-to-day experience of choosing clothes they need to wear to be comfortable. They can figure out how to represent the data they collect, perhaps using charts, drawing, writing, and photography. This collection and documentation can take place outside after children’s playtime and before they go indoors. Posting the data makes it easy for children to reflect on it, and discuss what they think. As they discuss, children may make claims about the relationship between cloud cover and precipitation, precipitation and temperature, and temperature and season. They may predict the next-day’s weather. Doing science through an inquiry into a natural phenomena involves children in the practices of science as they learn scientific knowledge.
The NSTA position statement goes on to say that “Practices and knowledge are obviously entangled in the real world and in classroom instruction, yet it is important for teachers of science to know the difference between science practices and the characteristics of scientific knowledge to best lead students to a comprehensive understanding of nature of science.”
Resources
National Science Teaching Association (NSTA). 2020. Position statement: The Nature of Science. https://www.nsta.org/about/positions/natureofscience.aspx
Peterson, Sherri, and Cindy Hoisington, Peggy Ashbrook, Beth Dykstra Van Meeteren, Rosemary Geiken, Sonia Akiko Yoshizawa, Sandy Chilton and Joseph B. Robinson. 2019. To Pin or Not to Pin? Choosing, Using, and Sharing High-Quality STEM Resources. Young Children. 74(3): 79-85 https://www.naeyc.org/resources/pubs/yc/jul2019/high-quality-stem-resources
Resources from Science and Children.
Ashbrook, Peggy. The Early Years columns
Coskie, Tracy L. and Kimberly J. Davis. 2009. Science Shorts: Organizing Weather Data. 46(5): 52-54
Marshall, Candice and H. Michael Mogil. 2007. Fabulous Weather Day. 44(5): 30-34
Royce, Christine Anne. 2019.Teaching Through Trade Books: Seasonal Weather Patterns. 56(6): 20-26
Winter weather often makes us wonder how wild animals survive without a heated environment.
Ask a Mentor
By Gabe Kraljevic
Posted on 2020-01-24
I was wondering how to reintroduce a lesson interrupted by unexpected days off (such as due to weather). Also, if the majority of the class is absent do you do an alternative lesson and finish the planned one when all the students are back?
— L., South Dakota
Interruptions are the norm, not the exception in education!
How you deal with interruptions will ultimately depend on several factors—the timing in your lesson plan, the complexity of the topic, number of students absent, and even day of the week can all influence your choice.
You should anticipate interruptions during the times of year you’re likely to encounter them. Build in some make-up days into your unit planning for those months. If you’re lucky and don’t get any interruptions then you have some “spare” days to do some more intensive lessons or labs, show videos, build in a field trip, review for assessments, and so forth.
I feel it is best to wait until you have most, if not the entire, class back before you finish a lesson. Students should not be put at a disadvantage because they missed class for an unforeseen and excusable event. For students who do make it to school, you could have an enrichment activity, additional videos, a work period, or have impromptu review and discussions. It may also be a good time to introduce a longer-term research project you may have planned and give some work time. Absent students can easily pick up the project instructions next class while the others continue to work.
Hope this helps!
Image by stoneyridgefarmky from Pixabay
I was wondering how to reintroduce a lesson interrupted by unexpected days off (such as due to weather). Also, if the majority of the class is absent do you do an alternative lesson and finish the planned one when all the students are back?
— L., South Dakota
Interruptions are the norm, not the exception in education!
Volume 2, Issue 1
Why Collaborate? This issue of Connected Science Learning focuses on Effective Collaboration.
Volume 2, Issue 1
Why Collaborate? This issue of Connected Science Learning focuses on Effective Collaboration.
Volume 2, Issue 1
Why Collaborate? This issue of Connected Science Learning focuses on Effective Collaboration.
Ask a Mentor
By Gabe Kraljevic
Posted on 2020-01-17
A quarter of my grade 7 students are at a beginning reading level. None are on grade level for reading. Can you help me help them?
— K., Alaska
Unfortunately, this is not uncommon. To answer your question, I consulted with a colleague, Rita MacDonald, co-leader of the NSTA-WIDA program. Making Science Multilingual. She says:
“Students who are not yet able to read and who will take a long time before they can read still have a need and a right to learn science. So, we need to:
A test that depends on reading will never give an accurate portrayal of what non-reading or non-English-fluent students know.”
Talk with these students’ English Language Arts teachers or school resource teachers and perhaps check out their school records for insights and ideas to help you. Don’t be dismayed. Just do your best to improve their reading; you won’t likely get them to grade level in one year but any improvement is great.
Hope this helps!
Image by Luisella Planeta Leoni from Pixabay
A quarter of my grade 7 students are at a beginning reading level. None are on grade level for reading. Can you help me help them?
— K., Alaska
Unfortunately, this is not uncommon. To answer your question, I consulted with a colleague, Rita MacDonald, co-leader of the NSTA-WIDA program. Making Science Multilingual. She says:
Editorial
As a Connected Science Learning reader, you already know that collaboration is what this journal is all about. We strive to publish articles that highlight ways different organizations come together to connect in-school STEM (science, technology, engineering, and math) learning to the world outside the classroom.
How many of you, at some point in your professional experience, have been involved in an effort referred to as a “collaboration” that in reality, well, just wasn’t? I know I have. More often, though, I’ve been part of collective work that was more impactful than anything the collaborating parties could have done on their own. Collaboration done well opens the doors for new possibilities and amplified impact. This is what is meant by the concept of emergence—the idea that parts of a system working together in a unified way take on properties that the parts don’t have on their own. Maybe there are some things that can only be accomplished if we work together.
In today’s world, though, collaboration has become a term both overused and used out of context—it’s a buzzword. Thankfully, there are lots of tools out there to stimulate deeper thinking about collaborative work. For starters, check out the surveys below from Build Initiative and the Wilder Foundation.
So, what does collaboration really mean, and what does effective collaboration actually look like?
Whether a simple partnership or a complex collective impact effort, collaboration done well takes time and no small amount of effort. Because of this, making the effort had better be worthwhile. Shared vision—meaning a common understanding of the problem to be solved and what constitutes success—is essential. There must be a reason for the parties involved to come together. Often, this reason is that combining expertise and resources makes a project more feasible and success more likely. Effective collaboration has purpose.
Arriving at a shared vision is much easier if the partnership cultivates a culture of honesty, trust, flexibility, and respect. This is apparent when all involved parties are willing to ask and answer questions (especially the tough ones), say what they think and hear what others have to say, change their minds in light of new information or alternate perspectives, and together use what is learned to guide the work. Effective collaboration requires communication and compromise.
Participating in collaborative work can be messy and confusing—and, frankly, sometimes even frustrating. It also can be fun and satisfying. It helps when there’s little ambiguity regarding the roles played by each organization and every individual involved, and when there’s a process for making decisions, taking action, and measuring success. Effective collaboration requires clarity about how power, responsibility, and accountability are distributed and shared.
Here are my two cents: Collaboration isn’t easy, and it’s not something to be done just for the sake of doing it. Under the right circumstances, though, it is surely the way to go. To paraphrase Aristotle (or perhaps some other philosopher): The whole truly can be greater than the sum of its parts.
Beth Murphy, PhD (bmurphy@nsta.org) is field editor for Connected Science Learning and an independent STEM education consultant with expertise in fostering collaboration between organizations and schools, providing professional learning experiences for educators, and implementing program evaluation that supports practitioners to do their best work.
As a Connected Science Learning reader, you already know that collaboration is what this journal is all about. We strive to publish articles that highlight ways different organizations come together to connect in-school STEM (science, technology, engineering, and math) learning to the world outside the classroom.
As a Connected Science Learning reader, you already know that collaboration is what this journal is all about. We strive to publish articles that highlight ways different organizations come together to connect in-school STEM (science, technology, engineering, and math) learning to the world outside the classroom.
Research to Practice, Practice to Research
Connected Science Learning January–March 2020 (Volume 2, Issue 1)
By Danielle B. Harlow, Ron Skinner, Tarah Connolly, and Alexandria Muller
Engineering Explorations are curriculum modules that engage children across contexts in learning about science and engineering. We used them to leverage multiple education sectors (K–12 schools, museums, higher education, and afterschool programs) across a community to provide engineering learning experiences for youth, while increasing local teachers’ capacity to deliver high-quality engineering learning opportunities that align with school standards. Focusing on multiple partners that serve youth in the same community provides opportunities for long-term collaborations and programs developed in response to local needs.
In a significant shift from earlier sets of standards, the Next Generation Science Standards include engineering design, with the goal of providing students with a foundation “to better engage in and aspire to solve the major societal and environmental challenges they will face in decades ahead” (NGSS Lead States 2013, Appendix I). Including engineering in K–12 standards is a positive step forward in introducing students to engineering; however, K–12 teachers are not prepared to facilitate high-quality engineering activities. Research has consistently shown that elementary teachers are not confident in teaching science, especially physical science, and generally have little knowledge of engineering (Trygstad 2013). K–12 teachers, therefore, will need support.
Our goal was to create a program that took advantage of the varied resources across a STEM (science, technology, engineering, and math) education ecosystem to support engineering instruction for youth across multiple contexts, while building the capacity of educators and meeting the needs of each organization. Specifically, we developed mutually reinforcing classroom and field trip activities to improve student learning and a curriculum to improve teacher learning. This challenging task required expertise in school-based standards, engineering education, informal education, teacher professional development, and classroom and museum contexts.
Interactive science museums have materials, tools, and expertise that differ from schools and can provide educational and compelling engineering experiences that complement what students are learning in formal school curricula (Bell et al. 2009). Coordinated school-based and museum-based engineering education programs allow children to engage in rich instruction, but this curricular cohesion is just the first step. Teachers must also develop the expertise and confidence to facilitate classroom activities that align with new standards and expectations around teaching engineering in the classroom. The Engineering Explorations modules involve four types of institutions: higher education (University of California, Santa Barbara [UCSB]), an interactive science center (MOXI, The Wolf Museum of Exploration + Innovation), an afterschool program (Girls Inc.), and two elementary schools (grades K–6). These institutions are all located within a 15-mile radius of each other and serve the same local population of schoolchildren. The institutions were already familiar with each other through previously established partnerships and collaborative projects that had emerged through local connections and mutual interests.
The primary partnership is between the practice-based institution, MOXI, and researchers at UCSB. MOXI and UCSB have formed a research practice partnership (RPP) (Coburn, Penuel, and Geil 2013) that has produced multiple interacting programs and related research. The RPP has focused on the array of learning experiences across schools and informal institutions, as well as research to inform facilitation techniques and training methods that support learning in the STEM disciplines. See Harlow and Skinner (2019) for an overview of the RPP’s multiple interacting programs and research directions, as well as Table 1 for more information about the partners.
Resources of the four institutions and benefits to them by participating in Engineering Explorations
During the 2017–2018 academic year, MOXI implemented field trip programs in which students engaged in an engineering design problem. Although students and teachers responded positively to the program, we recognized the limitation of having only 50 minutes with students. Also, teachers often requested resources for their classroom instruction. This motivated the development of the Engineering Explorations modules. Each Engineering Explorations module is composed of a set of four activities: The first two activities are done in classrooms prior to attending a MOXI field trip, the third activity is the field trip, and the fourth activity is completed in the classroom after the field trip (see Figure 1). Currently these pre- and postactivities are run as outreach programs facilitated by MOXI and UCSB staff in students’ regular classroom. However, our goal is to develop resources and activity plans for teachers so that they can implement the engineering activities in their classrooms before and after their field trip to the museum.
Our work follows a design-based research model (e.g., Anderson and Shattuck 2012; Barab and Squire 2004). Design-based research is “a systematic but flexible methodology aimed to improve educational practices through iterative analysis, design, development, and implementation, based on collaboration among researchers and practitioners in real-world settings” (Wang and Hannafin 2005, p. 6). Consistent with recommendations for design-based research (Anderson and Shattuck 2012), our project is situated in a real educational context, is focused on designing and testing a significant intervention, uses mixed methods, involves multiple iterations, and involves a collaborative partnership.
We began designing each Engineering Exploration module by developing the field trip activity. Because not all students who participate in the field trip activity do the pre- and postclassroom activities, the field trip programs must be designed as stand-alone activities. Classrooms that attend the MOXI field trip without having completed the previsit activities still participate in a design challenge based on a real-world problem that engages them in the process of engineering design.
After developing the field trip lesson, we considered the engineering and science activities that would benefit students in developing a deeper understanding of science and engineering ideas during the field trip program. Figure 1 depicts the framework that guides our module development. The first activity (done at school) engages students in a science investigation, through which they collect data and make observations. During this activity, students also draw their initial conceptual models of the phenomena being investigated. In the second in-class activity, students complete an engineering task. Their designs are informed by the data and observations made during the earlier activity. During these two preactivities, students also become familiar with some of the materials they will use during the field trip and develop skills related to manipulating these materials. At MOXI students engage in a more complex engineering task. After the field trip, they return to their classrooms and extend their learning through reflection on the activities, the engineering process, and additional data analysis, which includes revising their conceptual models of the phenomena being investigated.
Thus far, two modules have been developed and tested. One module is designed around the engineering task of designing a craft that will hover in a column of upward-moving air while supporting a small weight (Muller et al. 2019); the second module is based on combining layers of materials that will allow for the transmission of optimal amounts of visible light and infrared radiation (Connolly, Skinner, and Harlow 2019). Both modules are differentiated for grade level bands. Following, we describe the activities in the module that focuses on the transmission of visible light and infrared radiation through various materials.
The “Greenhouse on the Moon” module was designed around a MOXI field trip activity in which students design a “patch” for a lunar greenhouse by layering materials and testing the transmission of light and infrared radiation. Through piloting this activity, we determined that students would be more prepared to develop deeper understanding during the field trip program if they had prior experiences to help them develop a conceptual model of a filter as a material that absorbs and transmits light and infrared radiation. Thus the module begins with two preactivities that help students develop an understanding of filters through both science and engineering activities. All four activities (the three classroom activities and the field trip activity) are designed to take 50 minutes each (an entire module would require 200 minutes).
To help students build their knowledge of these concepts before the field trip, we designed a previsit activity that focused on a data-collection task in which students recorded what color they observed when they looked at different colors through a red or blue filter. They first make observations while looking through colored filters to see how each filter changes the appearance of various color images and other colors and patterns around the classroom (similar to the activity in DeVita and Ruppert 2007). Students then conduct a scientific investigation in which they use the filters as tools to make observations. Next, students use those observations to construct a table of colors with notes and documentation on how those colors appear when viewed through a red or blue filter. Students are told that the data table they create in this lesson, which maps visible colors to their filtered appearances, will be a resource for solving an engineering design challenge in the subsequent lesson (see Figure 2).
The second previsit activity introduces the idea that light travels as waves and that there are some types of light we cannot see with our eyes. The second part of the lesson involves an engineering design challenge: Deduce the original colors of a Rubik’s Cube. Students are given matching images of a Rubik’s Cube, but one is obscured by a red filter and the other is obscured by a blue filter (see Figure 3). Using the data they collected in the first lesson, students engage in a comparative analysis process to “reverse-engineer” the original image using filters, their color charts, and their understanding of the effects filters have on colored images. They then use colored markers to design a secret message that is revealed only when observed through a colored filter.
At the end of the activity, students reflect on their findings and “Draw a diagram or describe with words what they think will happen when a red or blue filter is placed over an image.” Together, these prelessons prime students with the ideas that the colors we see are a type of light, and there are types of light we cannot see. The activities also give students hands-on experience with filters that reduce or block different types of light, which supports the task in the field trip program. By introducing students to these ideas and materials, students’ participation and intentional iteration in the engineering design challenge during the field trip are subsequently enhanced.
This activity was inspired by exhibits and resources unique to the interactive science museum, such as infrared cameras. Students are welcomed into the museum’s classroom space, the Exploration Lab, and are immediately engaged in a live demonstration using an adapted version of visual thinking strategies (Yenawine 2013). In our case, the strategies consist of a discussion about a demonstrated phenomenon structured around three questions (“What do you think is going on? How do you know? What more can you see?”) to elicit their ideas about light and heat, the electromagnetic spectrum, and the effects that different materials have on the transmission of light and heat (see Connolly, Skinner, and Harlow 2019). Students are then presented with the design challenge of identifying the best materials for repairing a greenhouse on the Moon, which has specific criteria for the levels of visible light and infrared heat that are allowed to enter. Students iteratively test and measure different combinations of materials against a model of the Sun—a heat lamp—using infrared thermometers and lux meters to determine which materials they would recommend to repair the greenhouse, while meeting the given criteria (Figure 4).
The postvisit lesson extends the field trip by integrating additional elements of the engineering design process and connecting the field trip to the classroom curriculum. In this case, the postvisit activity involves an optimization task (NGSS disciplinary core idea ETS-1C) in which students are prompted to select a solution from a set of fabricated options while optimizing for the added variable of cost. Solution A is ineffective at meeting the light and temperature criteria but is very affordable. Solution B meets both criteria perfectly but is exceptionally expensive. Solution C is moderately priced but does not meet the criteria as closely as Solution B. Students are required to consider the pros and cons of each option and make an argument in favor of one. As a grade-level differentiation, the lesson can be adapted to require students to calculate the percentage of light or heat allowed by the provided solutions to inform their recommendations.
Together, the activities in this four-part module engage students in the NGSS performance expectation 4-PS3-2 (“Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents”), as well as the three disciplinary core ideas related to engineering (Defining Problems, Designing Solutions, and Optimizing Solutions) (NGSS Lead States 2013).
We partnered with Girls Inc. to adapt and combine the modules for a 10-week afterschool program, which took place at MOXI. For the afterschool participants, we increased the time spent on hands-on activities. Additional time to explore the museum was also included in their program.
We continuously evaluate and conduct research on the program with the goals of
We collect a variety of data, including student work, pre- and postassessments, observations, and interviews and surveys of teachers.
The Engineering Explorations field trip program was implemented at MOXI with over 100 classrooms of students ranging from grades K–6. We tested the full modules, which include pre- and postactivities and the field trip program, with 18 classrooms located at two schools. School A identified 40% of its students as English language learners, with 62% of students qualifying for free and reduced-price lunches. School B identified 9% of its students as English language learners, with approximately 11% of students qualifying for free or reduced-price lunches. We also worked with an afterschool program that served girls in the local area. In the test classrooms, we collected video of all four activities with 15 of the 18 classrooms, interviewed participating teachers, and collected student work. Facilitators of the activities wrote reflective field notes. Table 2 shows the number of classes from the two test schools. The hovercraft module is appropriate across elementary grade levels and the Greenhouse on the Moon module is appropriate for upper elementary school students.
Test classrooms
The teacher interviews indicate a positive response across grade levels. One said, “Kids were engaged; they got exposure to things that they may not have before, especially as far as trying to improve upon something that they previously had started working on or their ideas that they had. That’s not something that they do too much of.” Another reported that the program was “the first time that I’ve had a chance to see engineering lessons being taught to kids this young so I was very curious how it was going to go. Was it going to be too high level for them or how it was going to be presented to them on a level that they were going to be able to understand? I thought it was fabulous. They loved it.” However, the teacher interviews also point to difficulties that children encountered. A fourth-grade teacher mentioned how the concept of infrared radiation (which is not visible) was hard for students to comprehend based on the activities that were done in the classroom, which focused on visible light. She encouraged more guided discussions about radiation that is not visible.
The student work demonstrates both developing understanding of the engineering process and students’ thinking about the science ideas. When asked in the final activity how the work they did at MOXI was like the work of an engineer, one student stated, “I think engineers have to plan things before time and collaborate with their team like we did. I also think that they must fix their mistakes and use trial and error.” One science idea that was used across multiple activities in the greenhouse module was that of materials acting as filters, allowing some wavelengths of light to travel through while blocking others. In the classroom activities, students used filters that transmitted some colors and not others. In the MOXI activity, students used materials that transmitted or blocked infrared and visible light to varying degrees. During the first round of testing, we asked students to write and draw their ideas about how the materials at MOXI worked to block and transmit light and heat at the end of the module. Students’ ideas ranged from the filters changing the light, giving the light a color, or filtering out some colors and allowing some to pass through (see Figure 5 for three examples of sixth graders’ work). Through this research, we were able to better understand the range of student ideas during and after participating in the module. This helped us adjust our facilitator training materials for the field trip to better address common misconceptions that students were showing and revisit the structure of the lessons to include additional practice and experience with colored filters in the preactivities. In this way, the classroom activities allowed us to improve the field trip activities, benefiting all students who attended field trips, not just those who participated in the full module with the classroom activities.
In our work to develop a program that resulted in learning across contexts—classrooms, museum trips, and afterschool programs—we identified multiple challenges.
Classrooms that attended MOXI field trips were not required to complete the preactivities. Thus, the field trips had to work as a stand-alone activity. However, we also wanted the field trip activity to be designed in a way that could build on knowledge developed in the previsit activities for the classes that participated in them. As described above, we addressed this by first developing the field trip activity and then identifying the key concepts to develop in the classroom activities. During the testing phase, we knew which classes had participated in the full module and which had only participated in the field trip. However, this would not always be the case. So, during the testing phase, we ran the same program with students who had participated in the modules as those who had not. Through our interviews with teachers and observations of classrooms, we identified that this resulted in students (and teachers) not fully understanding the goal of the preactivities until they were presented with the design challenge during the field trip, making the initial activities potentially feel disconnected. In the coming year, we will develop initial activities that outline the design challenge of the entire module during the first preactivity to provide a more explicit story line for students.
Unlike classrooms, which typically include students of one grade level, students attending museum field trips considerably vary. First graders may visit one day and sixth graders the next, and each group requires different implementations. To reduce the training and development burden for the museum, we developed activities that could be implemented across a wide range of grades. However, as students acquire key math and literacy skills during their K–12 years, they become more capable of complex work. Although we did develop different versions of data collection worksheets for different grade levels, the largest adjustments needed to be made in the classroom activities. We developed multiple versions of the pre- and postactivities (grades 3 and 4, grades 5 and 6) and relied upon collaboration with K–12 teachers to help inform this process (see Muller et al., forthcoming).
The goal of Engineering Explorations was to have the classroom extensions be supplemental to the field trip, which required them to be scheduled close enough together that students did not forget the material. Also, teachers needed to make sure that there was enough time blocked off for the 50-minute activity, and MOXI needed to ensure that there were staff available to run the outreach activities. These requirements made scheduling a significant challenge to the implementation of Engineering Explorations.
Developing modules that include some activities designed for classroom environments and other activities designed for a field trip to an interactive science museum enables a richer learning experience for students that takes advantage of the unique resources of both schools and museums. Museums have specialized resources and materials (e.g., exhibits) that differ from the materials available in typical school settings. They are also not accountable to state and district standards. Together, this means that museums can provide STEM opportunities that are not possible in typical classrooms. However, the time that any one group of students is in a museum for a field trip is limited. In contrast, because students are in the same classroom each day, schools can provide extended opportunities for learning over several days. The series of activities in Engineering Explorations takes advantage of schools’ and museums’ structures and resources. Students who participate in the full modules have opportunities to develop ideas at a level that would be impossible in a single 50-minute lesson typical of a museum field trip program, while using the museum environment for experiences they could not have in their classroom. Combining school and field trip activities into coherent learning experiences addresses the challenge of bringing high-quality engineering education into K–12 classrooms and allows for rich learning experiences across multiple contexts.
This material is based upon work supported by the National Science Foundation (grant EEC-1824858; EEC-1824859).
Danielle B. Harlow (danielle.harlow@ucsb.edu) is professor of science education at the University of California, Santa Barbara in Santa Barbara, California. Ron Skinner (Ron.Skinner@moxi.org) is the director of education at MOXI, The Wolf Museum of Exploration + Innovation, in Santa Barbara, California. Tarah Connolly (Tarah.Connolly@moxi.org) is the curriculum specialist at MOXI, The Wolf Museum of Exploration + Innovation, in Santa Barbara, California. Alexandria Muller (Almuller@ucsb.edu) is a graduate student researcher at the University of California, Santa Barbara in Santa Barbara, California.
Engineering Explorations are curriculum modules that engage children across contexts in learning about science and engineering. We used them to leverage multiple education sectors (K–12 schools, museums, higher education, and afterschool programs) across a community to provide engineering learning experiences for youth, while increasing local teachers’ capacity to deliver high-quality engineering learning opportunities that align with school standards.
Engineering Explorations are curriculum modules that engage children across contexts in learning about science and engineering. We used them to leverage multiple education sectors (K–12 schools, museums, higher education, and afterschool programs) across a community to provide engineering learning experiences for youth, while increasing local teachers’ capacity to deliver high-quality engineering learning opportunities that align with school standards.