By Peggy Ashbrook
Posted on 2017-11-20
“Discovery bottles” are one way to allow children to use small objects without putting them in their mouths. These bottles for open-ended exploration can be constructed to relate to many different science concepts and topics. Other bottles are made expressly for helping children calm themselves as needed. See the Early Years blog post of September 17, 2009 or Sandy Watson’s 2008 article, “Discovery Bottles,” about using bottles filled with different materials as tools for science explorations. (Watson, Sandy. 2008. Discovery Bottles. Science and Children. 45(9): 20-24) Of course there is only “discovery” when children are first playing with the bottles and later when they talk about what they observe and think about it. None of the Discovery Bottles I’ve made have ever held children’s interest for more than a few months. Pass them on to another classroom or child care provider when your children have finished their discoveries.
Child care providers at a professional development session showed how important open exploration also is for adults. I was presenting about using Discovery Bottles to engage infants to eight year olds. I shared examples of using bottles filled with water and objects to play with and roll, and to observe water flow, air bubbles, magnification, color change (looking through colored water), floating and sinking objects, counting the number of objects, identifying shapes of objects, and for soothing oneself. Then each participant made their own to use for a purpose they chose and later described.
One provider and his spouse made a bottle half filled with water and just one cube made from thick art foam. He intended it to be a way to explore the level of a surface, to see how the cube floated when the bottle was laid sideways on different surfaces. Unexpectedly the cube stuck to the side of the bottle when he rotated the bottle, rather than staying afloat in the water. He wondered why the cube stuck there, wondering if static electricity was involved.
We talked with the small group at the table, then rubbed the bottle on our hair and tested to see if another cube of art foam would stick to the outside of the bottle. It did not. We talked about how the inside was different from the outside of the bottle and they identified water as being present inside. So he wet the outside of the bottle with water and put a cube onto the wet outside. Since the cube stuck in the water on the outside of the bottle he said he thought it was something about the water that made the cube stick to the bottle. We talked about how water sticks to our hands when we wash them and that children also experience this. There is a word for that phenomenon, “adhesion.” Knowing a word doesn’t help us understand why a phenomenon happens, but it does give us a quick way to talk about it. The ‘why’ can come much later, after children have had many experiences observing the properties of different states of matter and building structures out of many smaller parts, when children encounter the fact that matter is composed of atoms and molecules in middle school.
“Discovery bottles” are one way to allow children to use small objects without putting them in their mouths. These bottles for open-ended exploration can be constructed to relate to many different science concepts and topics. Other bottles are made expressly for helping children calm themselves as needed.
By Cindy Workosky
Posted on 2017-11-20
The Next Generation Science Standards (NGSS) offer teachers the opportunity to consider teaching science in a new way. We help students engage with, wonder about, and make sense of natural phenomena, which closely resembles how scientists perceive the world and do their work. By observing phenomena, scientists generate questions, predict outcomes, and generalize results to develop shared knowledge. Using NGSS, and with the teacher’s help, students also work to build shared knowledge.
But the NGSS present another opportunity that is nested within shared knowledge-building: the opportunity to teach sensemaking. Because shared knowledge-building is a collaborative effort, it requires students to interact with one another and make sense of one another’s ideas. To productively engage with other students’ ideas for understanding phenomena, students must do three things: Make their own idea clear and comprehensible, understand their classmates’ ideas, and figure out how to compare their ideas.
These tasks are harder than they seem; even adults find them challenging! When a colleague processes a shared experience very differently than you do, consider how hard it can be to regard his or her viewpoint as equally credible as your own.
Our understanding of what others say is heavily influenced by both our expectations and prior knowledge. When students have ideas that are very different from what is expected and what is already known, teachers must provide support so the ideas can be comprehended and considered potentially valid and sensible. Collective sensemaking is particularly challenging for ideas contributed by English language learners (ELLs), or by students with social or cultural perspectives that diverge from the rest of the classroom community. Their ideas may be differently constructed or developed from resources unfamiliar to students accustomed to mainstream white middle-class norms promoted in the classroom. In these situations, teacher supports require more thoughtful and purposeful preparation.
I recommend three processes to help prepare for these sensemaking opportunities:
Using these processes leads us along a new trajectory for developing increasingly sophisticated sensemaking skills: 1) Seeing others’ very different perspectives as valid, 2) learning how to make use of others’ ideas, and 3) developing sustained and rich discourse stamina.
Send home a science content or phenomenon interview for family (translated if necessary)
As the teacher in the ELL case study in Appendix D of the NGSS, I included the homework assignment to interview a family member about the driving question of the unit, “Is all soil the same?” As an English as a Second Language (ESL) teacher, I have found these family interviews useful in revealing the high-level thinking that students use but are unable to express in English. They also provide access to the intellectual resources for sensemaking that ELLs will draw from and offer to the rest of the classroom community.
Ever since Luis Moll and colleagues generated the Funds of Knowledge concept to describe the intellectual resources students bring to school from home and community, content-area ESL teachers have been developing ways to access those resources. If a scientific phenomenon is accessible and occurs in daily life, students can engage in high-level discourse with their families in their home language and then share those resources in science class.
The opportunity and benefits are not just for individual ELL student; they extend to all students in the classroom. When the teacher shares the interviews and ensures they are viewed as valid, the entire class gains access to increasingly diverse resources. In science, however, it can be challenging to ensure these resources from home and community are considered relevant by other students. My solution has been to write the experiences, ideas, and stories shared from home on sentence strips and present them as “evidence.” As a group, we can condense the stories into sentences, and highlight them alongside other evidence we’ve collected in class.
Returning to the example from Appendix D of NGSS, students shared information gathered from their family interviews about soils in different countries. Combined with other sources of evidence, this rich collection from diverse students helped our classroom community understand that soil varies across countries, has different colors and textures, and is made of different materials, and these factors influence what types of plants will grow.
Use Equitable Discourse Tools
As a content-area ESL teacher, I used the talk moves (traditional discourse moves) from TERC’s Talk Science Primer. But I found myself checking off different Talk Moves without using all the ideas to the fullest extent. This unintentionally introduced bias and led students to believe that some ideas were more useful for the community than others. Unfortunately, it was often the same students whose ideas were implied to be “less useful.” For example, if a student was presenting an idea that was unclear or didn’t make sense to me, I tended to emphasize it less because my perspective of success in discourse was based on whether I had satisfactorily delivered the prompt (e.g., Can someone build on that idea?), rather than on the idea’s usefulness to the community. There wasn’t an expectation that all ideas would be useful, but rather that all ideas would elicit a response.
What discourse moves—or what I propose we call Equitable Discourse—do is highlight the potential usefulness of every student idea. The concept of usefulness is an affordance. Each discourse move, in this framework, is a description of the work needed to capitalize on the affordance of a student’s idea. Talk can help clarify, strengthen reasoning, or apply “old” ideas to the new one. Every idea offers affordances for improving the sensemaking underway. By carefully considering how to use every idea, we advance sensemaking, and we begin to grasp how others perceive those science concepts, and how to shape and communicate those perspectives for a deeper and broader understanding of the phenomenon by everyone in the classroom.
Returning to the NGSS Appendix D example, an ELL student shared with the class the idea that black soil might mean that the soil has more water in it. His idea was not clearly understood, and it did not seem to particularly interest the rest of the class. The teachers, of course, thought that it deserved a response, and said, “Ah, yes, very interesting! Who agrees with Mohammad?” But initially, we did not substantially mine the idea.
The student persisted. He was trying to share that wetness could be an important identifiable characteristic of soil. If we had used the barometer of “idea successfully used by the class” as the measure of well-executed discourse, he would not have had to struggle to express himself. I consider this an excellent example of how equitable discourse moves can support class sensemaking, and enrich the knowledge building overall.
One of the equitable discourse moves is to “help student clarify their idea.” Mohammad’s idea—that soil can be wet and that wetness should be noted—didn’t make sense to most of the students because they were used to thinking of “wet vs. dry” as being a temporary characteristic, rather than a characteristic that varies across different types of soil. The discourse move helps us consider “whether or not the idea has been sufficiently clarified for use.” In this process, teachers model for the students the wherewithal and perseverance necessary for clarification, and at the same time, make explicit the skill of self-reflection for “how do I know that the idea is now clear?”
Examining and clarifying the student’s idea, especially because the idea didn’t make sense at first, turned out to be a valuable experience. At the end of the hour, the students remarked that soil as a characteristic of a habitat can be described in terms of wetness, and that this impacts what organisms the soil can support.
Prepare to Dig Into Discourse
Funds of Knowledge resources and the discourse moves are intended to support the teacher in creating an equitable space for conversation or “discourse.” This moves us away from the IRE model, in which —the teacher asks a question, the student answers, and the teacher evaluates——an approach perhaps best termed “guess what the teacher thinks.” We are aiming instead for a rich conversation in which teachers model the scientific practice of sensemaking: Ideas are being offered, considered valuable, evaluated, and then built on or discarded.
I have found that rich discourse happens when we allow sufficient time for thinking and reasoning to occur by and among many students. Most importantly, student ideas should represent a variety of ways to approach the phenomenon, incorporating the diverse intellectual resources that students bring from home and community, as well as classroom-based experiences. By digging deep into a conversation around questions with more than one right answer, students’ ideas can carry the conversation.
We are told that our aim with the NGSS is to mirror in the classroom many of the processes and practices that scientists use. But we can enhance some of those real-world practices by employing the processes I’ve described, and by viewing the classroom community and individual students as moving along a sensemaking trajectory in a way that is purposefully supported. Because the scientific community is extremely stratified and not very diverse, and current science may not be representative of broader and more diverse communities, we could be overlooking key questions and missing out on ideas that would foster deeper understanding and innovative solutions for the challenges science undertakes. By enabling our students—our future scientists and decision-makers—to acknowledge, evaluate, and incorporate diverse perspectives, we have an opportunity to build a world that expands and enriches who does science, how science is conducted, and how it is used in the real world.
Emily Miller is an elementary teacher and was a lead writer for the NGSS Diversity and Equity Writing team. She has taught science as an ESL/Bilingual Resource science specialist at a Title I urban school for 16 years. Miller has used the NGSS in her own diverse classroom and continues to improve and refine teaching to the standards with her students. She is consulting with the Wisconsin Center for Educational Research to develop teacher tools to promote sensemaking and language learning for ELLs in science. E-mail her at emilycatherine329@gmail.com.
Additional Links
Discourse Moves
MacDonald, R., E. Miller, and S. Lord. 2017. Doing and Talking Science: Engaging ELs in the Discourse of the Science and Engineering Practices. In Science Teacher Preparation in Content-Based Second Language Acquisition. p. 179-197. Springer International Publishing.
https://link.springer.com/chapter/10.1007%2F978-3-319-43516-9_10
https://www.wida.us/get.aspx?id=2095
http://stem4els.wceruw.org/resources/Student-and-Teacher-moves.pdf
Funds of Knowledge
Moll, L. C., C. Amanti, D. Neff, and N. Gonzalez. 1992. Funds of knowledge for teaching: Using a qualitative approach to connect homes and classrooms. Theory into practice. 31(2), 132-141.
https://edsource.org/wp-content/uploads/old/Luis_Moll_Hidden_Family_Resources.pdf
Appendix D
https://www.nextgenscience.org/appendix-d-case-studies
Lee, O., E. C. Miller, and R. Januszyk. 2014. Next generation science standards: All standards, all students. Journal of Science Teacher Education. 25(2), 223-233.
ELL Case Study ELL
https://www.nextgenscience.org/sites/default/files/%284%29%20Case%20Study%20ELL%206-14-13.pdf
Different perspective STEM TEACHING TOOL
TERC MOVES
https://inquiryproject.terc.edu/shared/pd/TalkScience_Primer.pdf
This article was featured in the November issue of Next Gen Navigator, a monthly e-newsletter from NSTA delivering information, insights, resources, and professional learning opportunities for science educators by science educators on the Next Generation Science Standards and three-dimensional instruction. Click here to access other articles from the November issue on assessing three-dimensional learning. Click here to sign up to receive the Navigator every month.
Visit NSTA’s NGSS@NSTA Hub for hundreds of vetted classroom resources, professional learning opportunities, publications, ebooks and more; connect with your teacher colleagues on the NGSS listservs (members can sign up here); and join us for discussions around NGSS at an upcoming conference.
The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.
Future NSTA Conferences
2017 Fall Conferences
National Conference
The Next Generation Science Standards (NGSS) offer teachers the opportunity to consider teaching science in a new way. We help students engage with, wonder about, and make sense of natural phenomena, which closely resembles how scientists perceive the world and do their work. By observing phenomena, scientists generate questions, predict outcomes, and generalize results to develop shared knowledge. Using NGSS, and with the teacher’s help, students also work to build shared knowledge.
By Susan Cohen
Posted on 2017-11-20
My goal for students in my eighth-grade middle school science class is to enter high school with the absolute certain knowledge that they can “do” science. They know that when presented with the inevitable problems and questions of everyday life, they have strategies to analyze, interpret, and sort evidence to make good decisions. My role is to provide a framework for students to develop those strategies. The NGSS practice of asking questions and defining problems is the first of the techniques I use in my classroom.
Middle school students question everything. What middle school teacher has not heard, “When am I ever going to use this?” For science teachers, the solution is culturally relevant pedagogy connecting science curriculum, the Disciplinary Core Idea, to students’ cultural experience: i.e., the NGSS practice of asking questions and defining problems. I offer some examples of cultural connections my students have made.
Eighth graders at my school participated in a unit on the carbon cycle and renewable energy that included discussions about corn as a biofuel. Students discovered that corn was highly subsidized by the federal government, which led to rich discussions about the ethics of using food for transportation or energy and how that might impact food prices. This was a particular concern for the 63% of my students whose families lived in poverty. Students conducted a thorough investigation of their home pantries to discover how many foods contained corn or included corn syrup among the ingredients.
Students of different ethnic backgrounds found different foods in their cupboards, containing varying amounts of corn and corn products. The parents of three students refused to buy high-fructose corn syrup, so these students found very few examples to share with the class. Most students, however, had a heavy corn-based diet, and they questioned the availability of corn for eating if it was being used as fuel.
The revelation that so many families in our school community depended on corn as a staple of their diet motivated the students to conduct further research on biofuel production. This research dovetailed nicely into our study of the carbon cycle. It offered a cultural connection to students’ lives and led to student engagement.
In one of the unit’s formative assessments, students were asked to create a presentation about what they found most engaging about the unit. Students responded by creating cheerleading chants complete with tumbling; panel discussions; rap songs; posters; PowerPoint/Google Doc presentations; and two research papers. The point of this assessment is to give students an opportunity to demonstrate their mastery of the science in a creative, engaging, and entertaining way that connects what they learned to their own cultural experience.
Making cultural connections is sometimes as easy as asking students to do it themselves, as I did for the final task in the carbon cycle unit. After sharing all of their research and information and discussing it as a class, students wrote deeply thoughtful statements showing their personal connection to the carbon cycle and its impact on their lives. Many students commented on how vital the new information was to their future. One young man said he wanted to learn all he could about the mistakes adults had made so he could correct things as an adult. Another understood he and his family depended on current technologies, and he worried about the damage these technologies were doing to the environment.
Students also wrote about the discussions they had with their families. My classroom has a range of abilities and multiple languages, so student responses were written in four different languages, and two students used pictures to convey their thoughts. All students demonstrated an understanding of how the unit connected to their lives.
Connecting the Disciplinary Core Idea to one’s own life leads naturally to making connections across disciplines, what NGSS calls Crosscutting Concepts. In the past, these connections were often made by more advanced students, but the NGSS makes the connections explicit for and accessible to all students. In the carbon cycle unit, students quickly saw not only the connections to biology (food pyramid) and Earth science (formation of sedimentary rock and fossil fuels), but also to food production and the industrial revolution lessons from their social studies class, and the graphs, patterns, and data analysis from their math class.
It became almost a game with students to see who could make the most connections of the carbon cycle to the world outside the science classroom. They joyfully connected the carbon cycle to television shows, news events, and even to a rap song. Once students understood the connections across disciplines, they were able to create a framework for a more coherent scientific view of their world.
The middle school classroom is where students develop the strategies needed to become critical thinkers. The NGSS practice of asking questions, defining problems, and connecting them to students’ cultures and everyday lives makes inquiry a compelling and engaging activity for students, and answers the age-old question, “When am I ever going to use this?”
Susan Cohen is a National Certified Master Teacher in the area of early adolescence science and was the teacher highlighted in the race and ethnicity case study in Appendix D of the NGSS. She has taught middle school science for 20 years in a highly diverse urban school.
This article was featured in the November issue of Next Gen Navigator, a monthly e-newsletter from NSTA delivering information, insights, resources, and professional learning opportunities for science educators by science educators on the Next Generation Science Standards and three-dimensional instruction. Click here to access other articles from the November issue on assessing three-dimensional learning. Click here to sign up to receive the Navigator every month.
Visit NSTA’s NGSS@NSTA Hub for hundreds of vetted classroom resources, professional learning opportunities, publications, ebooks and more; connect with your teacher colleagues on the NGSS listservs (members can sign up here); and join us for discussions around NGSS at an upcoming conference.
The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.
Future NSTA Conferences
2017 Fall Conferences
National Conference
My goal for students in my eighth-grade middle school science class is to enter high school with the absolute certain knowledge that they can “do” science. They know that when presented with the inevitable problems and questions of everyday life, they have strategies to analyze, interpret, and sort evidence to make good decisions. My role is to provide a framework for students to develop those strategies. The NGSS practice of asking questions and defining problems is the first of the techniques I use in my classroom.
By Rita Januszyk
Posted on 2017-11-20
Like many classrooms around the country, my diverse fourth-grade classroom consisted of regular education students, special education students, English learners, gifted students, students receiving free and reduced-cost lunches, and students from different racial and ethnic backgrounds. The science and engineering practice of developing and using models affords all students access to science learning.
As one of the writers of the Next Generation Science Standards (NGSS) and member of the NGSS Diversity and Equity Team, I became familiar with the research on effective teaching strategies described in NGSS Appendix D. I learned that the effective teaching strategies leverage support of science learning for specific demographic groups. But how could I incorporate all the strategies in my unit and lesson plans for my diverse classroom? Since some strategies overlapped across demographic groups and some students overlapped across demographic groups, I focused on those overlapping strategies (noted in italics in the lesson description below):
I incorporated effective strategies to promote my students’ engagement and support their learning as I wrote the lesson sequence to meet the fourth-grade NGSS performance expectation:
4-PS4-2. Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.
The Framework for K–12 Science Education states that developing and using models is central to the work of a scientist or engineer. Scientists develop models to communicate their ideas and use models to explain and predict phenomena. In traditional science instruction, students are presented with a finished model without understanding what it means to arrive at that model scientifically. When using instruction based on the NGSS, as students develop a model, they can make their thinking visible. My fourth-grade students visualized the phenomenon and made sense of the idea that light reflects off the object, enters the eye, and thereby causes the object to be seen.
The lesson sequence began with a question: How do we see an object? Working with their group, students received a lidded box that had an eyehole and a flap. For the investigation, students (1) looked inside the box and recorded observations; (2) opened the flap, looked inside the box, and recorded observations; and (3) shined a flashlight into the opened flap, looked inside the box, and recorded observations. With each observation, students were prompted to answer the question how does your observation help you understand how you can see the object? (The group discussion with each observation is language intensive.)
Each group discussed their ideas, then developed an initial model that represented their consensus on their ideas. (Using multiple modes of representation, an English learner develops a model to communicate science ideas.)
Students did not reach consensus and had several questions about how they could see an object. I handed out mirrors and black paper. Students investigated and made more observations. As I circulated among groups, I prompted their thinking about the path of the light in the investigation. (The investigation provides ample opportunities for language use while doing science.)
A key part of modeling is that students, like scientists, revise their models to fit with new evidence. The continued investigation and the description of the path of the light was an outgrowth of authentic questions that my students generated. They revised their models to include their new understanding.
What was the change from the initial model to the revised model? In the initial model, the arrow direction was from the eye to light box. In the revised model, arrow direction showed the light entering the eye. The initial model conveyed a common student perception that seeing something comes from the eye, like an eyebeam.
In the NGSS classroom, as students continue to investigate, they make additions and changes to their model. They are able to link new knowledge with prior knowledge. A teacher might ask these questions: What are your group’s ideas? Do you agree with those ideas? What do we investigate next?
The science and engineering practice of developing and using models is important. First, this practice is an important, authentic scientific enterprise. Second, this practice provides affordances for diverse students toward understanding new ideas and expressing those ideas using multiple modes of representation. My experience affirmed that all of my students were highly engaged when developing and revising their models to make sense of the phenomenon that was compelling to them.
Note: The lightbox investigation task is based on a similar task in Investigating and Questioning our World through Science and Technology (IQWST) curriculum units.
Rita Januszyk (ritajanuszyk@gmail.com) is a retired elementary teacher from Hinsdale, Illinois. She was a K–5 classroom teacher and gifted push-in teacher and coordinator. Januszyk worked on many teams during the development of the Next Generation Science Standards, including the writing team, NGSS Diversity and Equity team, NGSS Evidence Statements team, and NGSS Classroom Sample Tasks team. She also served on the Illinois State Board of Education Model Science Resource Project. Januszyk is one of the editors and contributors of the book NGSS for All Students, published by NSTA (2016). Currently, she is working with New York University and Stanford University as a science writer for grade 5 NGSS-aligned units, and is providing professional development workshops and presentations to help implement the NGSS.
This article was featured in the November issue of Next Gen Navigator, a monthly e-newsletter from NSTA delivering information, insights, resources, and professional learning opportunities for science educators by science educators on the Next Generation Science Standards and three-dimensional instruction. Click here to access other articles from the November issue on assessing three-dimensional learning. Click here to sign up to receive the Navigator every month.
Visit NSTA’s NGSS@NSTA Hub for hundreds of vetted classroom resources, professional learning opportunities, publications, ebooks and more; connect with your teacher colleagues on the NGSS listservs (members can sign up here); and join us for discussions around NGSS at an upcoming conference.
The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.
Future NSTA Conferences
2017 Fall Conferences
National Conference
Like many classrooms around the country, my diverse fourth-grade classroom consisted of regular education students, special education students, English learners, gifted students, students receiving free and reduced-cost lunches, and students from different racial and ethnic backgrounds. The science and engineering practice of developing and using models affords all students access to science learning.
By Kate Falk
Posted on 2017-11-17
This week in education news, Girls Scouts launch $70 Million STEM initiative; new study reveals that some Latinos believe science education may have a negative impact on the religious faith of their children; the more education that Democrats and Republicans have, the more their beliefs in climate change diverge; Nevada may add math and science requirements to graduate high school; and after school STEM programs inspire kids to keep learning.
Attracting, Retaining Qualified And Diverse Faculty Is A Prerequisite To Building The Field
As we try to digest how to get more women and underrepresented minorities into STEM fields, or really any other type of career, experts often say that one key factor is that students see in themselves a future through the people they look up to. In other words, it’s difficult for a girl from a diverse background to see herself getting into a computer science field, when the demographics of her class and her professor is the complete opposite of anything she’s ever known. Read the article featured in Education DIVE.
Girl Scouts Launches $70 Million STEM Initiative
Girl Scouts of the USA has announced a national fundraising initiative in support of a new program aimed at closing the gender gap in the fields of science, technology, engineering, and mathematics. Read the article featured in Philanthropy News Digest.
Some Latinos Believe Science May Negatively Impact Their Kids’ Faith
More than one-third of Latinos interviewed in a recent study believe science education may have a negative impact on the religious faith of their children, according to new research from sociologists at Rice University. The study examined the relationship between STEM education and religious faith from the perspective of blacks and Latinos, two groups that are among the most religious in the U.S. Read the press release from Rice University.
Even When States Revise Standards, The Core Of The Common Core Remains
For a while, the Common Core State Standards seemed to teeter on the brink of the abyss. State lawmakers were defecting left and right, convening committees to rewrite the standards. But a review released of 24 states’ revisions show that they have largely preserved the common core’s most important features. Read the article featured in Education Week.
The More Education Republicans Have, The Less They Tend To Believe In Climate Change
Climate change divides Americans, but in an unlikely way: The more education that Democrats and Republicans have, the more their beliefs in climate change diverge. About one in four Republicans with only a high school education said they worried about climate change a great deal. But among college-educated Republicans, that figure decreases, sharply, to 8 percent. Read the article featured in The New York Times.
Nevada Students May Soon Face Added Math, Science Requirements
Nevada may soon join a handful of states that require students to pass four credits of math to graduate high school, a move critics say would limit student choice. At the moment, the plan includes adding one credit apiece of math, science and social studies to current requirements. Read the article featured in the Las Vegas Review-Journal.
Fires, Floods, Hurricanes: Teachers Turn Natural Disasters Into Science And History Lessons
At Design Tech High, a charter school in Burlingame that’s affiliated with Oracle, students are analyzing the science behind the Tubbs Fire that raged through Sonoma County in October and creating blueprints for how the destroyed neighborhoods can rebuild in a way that could minimize impacts from the next fire. “Drought, famine, fire, war — students get it. They see the connection between what’s on the news and these larger environmental issues,” said Andra Yeghoian, environmental education coordinator for the San Mateo County Office of Education, who teaches environmental science and trains teachers at Design Tech and other public schools in San Mateo County. Read the article featured in EdSource.
After-School STEM Programs Inspire Kids To Keep Learning
At an after-school STEM club in Rhode Island, students are working on an engineering challenge — because they want to be. The low-stakes, fun environment offers time for exploration when resources or hands-on activities may be in short supply during school hours, and can help sustain interest as classes get harder. Watch the segment featured on PBS Newshour.
Fascinating: Can Analytics Help Schools Hire The Best Teachers?
As K-12 school administrators know, finding the best talent for their schools is becoming more challenging, with fewer people entering the teaching profession and more teachers retiring. With no near-term end in sight, hiring and retaining great teachers may be problematic for years to come. Read the article featured in eSchool News.
3 Reasons To Introduce Kindergartners To Robots
The children we teach were born with technology as a part of their lives. They don’t know a world without touchscreen phones and computers in every room. In today’s world, saying that subjects like coding and robotics “are for ‘big kids’” is like saying “reading is for ‘big kids.’” Read the article featured in eSchool News.
Stay tuned for next week’s top education news stories.
The Communication, Legislative & Public Affairs (CLPA) team strives to keep NSTA members, teachers, science education leaders, and the general public informed about NSTA programs, products, and services and key science education issues and legislation. In the association’s role as the national voice for science education, its CLPA team actively promotes NSTA’s positions on science education issues and communicates key NSTA messages to essential audiences.
The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.
Follow NSTA
Safety Blog
By Kenneth Roy
Posted on 2017-11-14
Although guest presenters can offer real-life science experiences to students, they may not be familiar with the safety practices that need to be in place to create safer learning experiences. In October 2012, for instance, two fourth graders were rushed to a hospital during a science demonstration involving dry ice and salt. As part of the demonstration with the science education company Mad Science, students placed items in their mouths, reportedly resulting in corrosive burns in one child’s mouth and throat.
As a licensed professional, the teacher carries the bulk of the legal responsibility with student injuries during a demonstration. Thus, science teachers need to keep safety in mind when planning a guest presentation. The following seven strategies will help teachers prepare for the event and establish safety guidelines and expectations for guest speakers.
1. School policies. Contact school administrators to determine if there are any policies in place governing the use of guest speakers in your classroom or science laboratory.
2. Announce the activity. Let the school’s main office know about plans to have a guest speaker, including the time, date, location, and topic. Also, invite building administrators, the department head, and fellow colleagues to the presentation.
3. Choose a reputable source. Know who you are inviting as a guest. Reach out to colleagues, parents, the local Chamber of Commerce, local colleges, and other reputable resources for guest speakers.
4. Set your expectations. Before the guest speaker comes into the classroom:
• review any school policies related to guest speakers; and security procedures such as registering at the main office and wearing appropriate attire.
• review the speaker’s lesson plan(s) to determine what safety procedures (e.g., personal protective equipment, hazardous chemical use) might be required. The teacher must also approve any changes to the lesson plan before the presentation.
• the science teacher and the guest presenter should develop and sign a letter of agreement, acknowledging the lesson plan and required safety practices that will be in place.
• request educational technology needs (e.g., computer, LCD projector, VCR).
• provide parking instructions.
5. Check the hygiene plan. Review your school’s Chemical Hygiene Plan with the guest speaker, especially in demonstrations using hazardous chemicals or requiring general laboratory work.
6. Give feedback. Develop a teacher and student feedback form about the presentation as well as a speaker feedback form to be filled out by the presenter. Share summaries of the feedback with the presenter. The student feedback form could use the Likert scale focusing on items such as:
• usefulness of information presented,
• level of interest in topic by students,
• relevance to area of study, and
• general comments/recommendations.
The teacher feedback form could include items such as:
• grade appropriateness,
• additional safety suggestions,
• areas of strength,
• areas of least interest, and
• general comments and suggestions.
The speaker feedback form for teacher could include:
• availability and operation of educational technology,
• communications and arrangements,
• specific expertise,
• future interest in presenting, and
• general recommendations.
7. Have a backup plan. Have an alternative plan such as a reading assignment, video, or lecture in place in case of an emergency or you or the presenter cannot make it that day, but you may also reschedule the activity to another time.
In the end
Teachers should give the presenter a thank-you note from students.
Submit questions regarding safety in K–12 to Ken Roy at safesci@sbcglobal.net or leave him a comment below. Follow Ken Roy on Twitter: @drroysafersci.
NSTA resources and safety issue papers
Join NSTA
Follow NSTA
Although guest presenters can offer real-life science experiences to students, they may not be familiar with the safety practices that need to be in place to create safer learning experiences. In October 2012, for instance, two fourth graders were rushed to a hospital during a science demonstration involving dry ice and salt.
By Gabe Kraljevic
Posted on 2017-11-14
This is my first year of teaching physics and I can’t think of generic substitute plans for this class. Can you suggest some generic/emergency plans that could help me?
– E., Michigan
One of the hardest things is to wake up knowing you can’t make it to work and you’re now scrambling to provide something for your substitute. Mary Bigelow recently posted an excellent blog post (goo.gl/7ctWKe) on preparing for substitutes. Since your question is specific to physics, I can add a little to her advice.
When showing videos, the students shouldn’t see them as a break from learning, particularly when there is a substitute teacher. You should always have some form of follow up or active component. An online search for graphic organizers to respond to videos will give you lots to choose from. Keep these on file.
Hope this helps.
This is my first year of teaching physics and I can’t think of generic substitute plans for this class. Can you suggest some generic/emergency plans that could help me?
– E., Michigan
By Kate Falk
Posted on 2017-11-10
This week in education news, a team of researchers is now analyzing whether science fairs help to improve student achievement or interest in science; Best Buy pledges $30 million to dramatically expand its Teen Tech Centers; K-12 students in 30 Long Island school districts are learning to code; teachers would lose $250 deduction for classroom material under new proposed tax bill; a new study finds teachers who are good at raising test scores are worse at making students happy and engaged in school; and OK governor sets goal to increase the number of paid internships and apprenticeships in the state to 20,000 each year by 2020.
Are Science Fairs Worth All That Trouble? Study Seeks Some Answers
It’s something of a rite of passage for middle school students (and parents) to struggle with musical water glasses, baking soda volcanoes, sprouting yams, and red cabbage indicators in the science fair. Surprisingly, we don’t actually know a ton about how (or whether) the fairs help to improve student achievement or interest in science. But thanks to a National Science Foundation grant, a team of researchers is now analyzing a national survey and case studies of more than a dozen schools for clues about how the fairs might help pay dividends for students. Read the article featured in Education Week.
A Corporate Funder Finds a Way to Get Teens Jazzed About STEM and Scales It Up in a Big Way
Best Buy recently pledged $30 million to dramatically expand its 11 Teen Tech Centers to more than 60 in the next three years. The philanthropic arm of the consumer electronics store also plans to extend its internship and professional mentorship opportunities. The expansion is a part of its goal to reach 1 million kids a year by 2020. Read the article featured in Inside Philanthropy.
Kindergarten Coding: Schools Teach Tech Skills At All Levels
Dozens of Long Island school districts are asking students to put down their pencils and pick up their keyboards to learn the tech-savvy skills of computer programming. About 30 Long Island school districts have contracted to work with kidOYO, a nonprofit that offers digital lessons in more than two dozen programming languages to students in prekindergarten through senior year of high school. Read the article featured in Newsday.
Teachers Would Lose $250 Deduction For Classroom Materials Under GOP Tax Bill
The tax bill proposed by Republican leaders scraps a benefit that many teachers have come to rely on: the $250 “educator expense deduction,” which can be used to recoup the cost of classroom materials. Read the article featured in Education Week.
Congress Urged To Invest In Blue-Collar STEM Jobs
Automation and other technological advancements threaten to put good-paying jobs further out of reach for marginalized groups unless more investments are made in preparing students for “Blue-Collar STEM” jobs, panelists convened Tuesday on Capitol Hill said. Read the article featured in Diverse.
Is A Good Teacher One Who Makes Kids Happy Or One Who Raises Test Scores?
On average, teachers who are good at raising test scores are worse at making students happy and engaged in school, a new study finds. The study, written by David Blazar, an assistant professor of education policy and economics at the University of Maryland, looked at data from 4th and 5th grade teachers in four school districts from three states over three school years. Blazar found that teachers do have substantive impacts on students’ attitudes and behavior, particularly students’ happiness in class. And he also found that the teachers who are skilled at improving students’ math achievement may do so in ways that make students less happy in class. Read the article featured in Education Week TEACHER.
Oklahoma Gov. Mary Fallin Sets Goals For Apprenticeships To Help Address The State’s Skills Gap
Gov. Mary Fallin announced a goal to increase the number of paid internships and apprenticeships in Oklahoma to 20,000 each year by 2020 to help address the state’s workforce shortage. The Earn & Learn Oklahoma initiative will benefit both workers and employers who cannot find the skilled people they need, Fallin said. Read the article featured in The Oklahoman.
Do students Buy Into Maker Culture?
Maker culture is going mainstream. The maker industry is projected to grow to more than $8 billion by 2020, and with the maker movement infiltrating classrooms, after-school clubs and homes, it’s no wonder. But where is the maker movement strongest? A new report from robotics and open-source hardware provider DFRobot aims to find out by analyzing DIY-labeled products hosted on Kickstarter. Read the article featured in eSchool News.
Stay tuned for next week’s top education news stories.
The Communication, Legislative & Public Affairs (CLPA) team strives to keep NSTA members, teachers, science education leaders, and the general public informed about NSTA programs, products, and services and key science education issues and legislation. In the association’s role as the national voice for science education, its CLPA team actively promotes NSTA’s positions on science education issues and communicates key NSTA messages to essential audiences.
The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.
Follow NSTA